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ABSTRACT

Speakers frequently retrace one or more words when continuing
after a break in fluency. Syntactic principles constrain the points
from which speakers retrace; however syntactic principles do not
provide predictions about the relative usage of different allowable
retrace points. Such predictions are useful for automatic process-
ing of repairs in speech technology, particularly if they use in-
formation readily available to a speech recognizer. We propose a
quantitative model that predicts the overall distribution of retrace
lengths in a large corpus of spontaneous speech, based only on
word position. The model has two components: (1) a constant,
position-independent probability for extending a retrace by one
more word; and (2) a position-dependent probability to “skip”
to the beginning of the sentence. Results have implications for
modeling repairs in speech applications and constrain explana-
tory models in psycholinguistics.

1. INTRODUCTION

When speakers resume after a disfluency, they often retrace back
one or more words before continuing, producing simple repeti-
tions as well as repeated words in repairs. A question important
to modeling repairs in both psycholinguistics and in speech tech-
nology is: when speakers retrace, what predicts how far back they
go? Previous accounts of retracing in linguistics and related fields
have illuminated syntactic constraints on retracing—namely that
speakers retrace to points that correspond to the onsets of syntac-
tic phrase boundaries, and which can produce a well-formed syn-
tactic coordination between the original utterance and the contin-
vation [3]. The syntactic phrasing accounts match native speaker
judgments about what constitutes a “bad” retrace point. However,
they do not predict which of many possible remaining retrace
points are chosen. In English as well as other right-branching lan-
guages, many locations in an utterance correspond to the onsets of
constituents, and a large subset of these correspond to points that
produce a well-formed coordination—including retracing back to
the sentence onset. For example in the following case, all possible
previous words constitute viable retrace points:

At the end of the road — ((((at) the) end) of) the block

Our goal in this study was to explore whether overall corpus
statistics on the length of retracings could be predicted using in-
formation readily available to a speech recognizer. We focus on

word position for this purpose, since retracing is inherently con-
strained by this factor and since information on words can be eas-
ily modeled in speech systems.

2. METHOD

2.1. Data

Data consisted of transcripts from the Switchboard corpus of
human-human dialog over the telephone [2], distributed by the
Linguistics Data Consortium (LDC). We used a subset of 1115
conversations (roughly 1.4M words, 350 different speakers) that
had been marked for sentence boundaries and for disfluencies by
the LDC, as described in [5]. Word correspondences within dis-
fluencies were not marked, but retraced words could be detected
automatically with high accuracy by aligning reparandum and re-
pair regions via dynamic programming. We recorded all instances
of simple repeats, as well as cases of retracing before changed
words in other repairs. This resulted in a set of 30,524 disfluen-
cies containing one or more retraced words.

2.2. Measures

We characterize retracing in terms of two measures, the number
of retraced words (retracing length, k) and the position relative
to the start of the utterance at which the retraced word sequence
ends, (retracing position, m7) as illustrated in Figure 1.

m=5
f————
k=2
——
At the end of the road
of the block there is this vacant lot.

Figure 1: Word-Based Measures

In conducting the analyses, we found two general principles to be
true empirically:

(1) Retrace points do not occur within words.
(2) Retracing does not cross sentence boundaries.

We found no cases of retracings involving the second word in
contractions. For examples, cases like “I’ll — 11 ” did not occur.
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Figure 2: Distribution of Retrace Lengths by Position

This is not surprising given the phonotactic and prosodic charac-
teristics of contracted forms. We found empirically that results
overall are considerably cleaner for the analyses herein, if con-
tractions are counted as a single word (while their noncontracted
counterparts are counted as two). We also found that speakers
did not back up across sentence boundaries in retracing, and any
made-up examples sound quite odd. This constraint is predicted
by the coordination rule [3], but notably not simply by a phrase-
onset constraint without some notion of maximal projection. Be-
cause speakers do not back up across sentence boundaries, the
maximum value of & for any particular token is equal to m.

3. A QUANTITATIVE MODEL

Since m determines the maximum retrace length & for each token,
we plotted our tokens separately by m values. Figure 2 shows
the relative frequency of each retrace length & in our corpus, in
the log frequency domain. Lines connect points for each m value,
and since the measure on the ordinate is relative frequency, points
for each m sum to 1.0. Only data form =1,...,6 are shown,
but higher m values show the same pattern. The case of m =
1 is degenerate; it includes only one point, at 0 on the log plot
(since all retracings from a retrace point that is one word into an
utterance must be one word long).

A first observation is that for each m value, there is an apparent
exponential decay in frequency with increasing values of k. The
only exception is that the final “hooks” for each trend (k = m) are
consistently higher than expected based on the previous points.
We will come back the question of final points later. Ignoring the
final hooks for the moment, it is also apparent that the lines for
different m values are parallel, suggesting that the rate of decay
in retrace length is about the same, regardless of where in the
sentence the retrace was started from.

3.1. Retrace length decay rate

The simplest model we can propose for the decay rate for k < m
is the following: assume that at any position m, there is a uni-
form probability, p, which corresponds to the probability that the

speaker will retrace back one additional word. Under this simple
assumption we can model the probability of observing a retrace-
length of exactly k£ words by a geometric distribution:

Prob(k) = (1 - p)pk~1

Since the world of cases we are considering all contain at least
one retraced word, the first time this probability is applied is after
the first word has been retraced; thus the exponent is k— 1. We
can think of p as the “pass” probability, or the probability that the
speaker will retrace back one more word. Note that p is indepen-
dent of how many words were retraced already (lines for each m
are straight in the log plot); and p is independent of where in the
sentence retracing started (lines for different m values have the
same slope).

If p is the probability of retracing one more word, then 1 — p can
be thought of as a “stop” probability, or the probability that the
speaker will stop adding words to the retraced string (i.e., that
he will back up no further than the current location). The result-
ing “stopping” points are locations that speakers choose as the
left edge of their retraced string. Although we do not know what
they correspond to in this study, they are the same points that
other accounts have explained as onsets of syntactic or prosodic
phrases. Thus we may want to view the model in terms of some
type of phrase rather than as probabilities of stopping applied
at each word. We will define a construct, r—phrase (retracing-
model-phrase), for this purpose; an r—phrase is the shortest dis-
tance between two stopping points. Note that the r—phrases so de-
fined differ from syntactic phrases because r—phrases are purely
concatenative; the end of a previous r—phrase is the beginning of
the next, so there is no nesting or overlap of r—phrases. Since
under the present model, we would have an r—phrase boundary
between any two words with a probability of 1 — p, the average
length of an r—phrase is ﬁ words.

3.2. Skip parameter

We next focus on accounting for the final hooks. One possible
explanation is that they result from applying the geometric distri-
bution to the finite range of observed k values, accumulating the
excess probability from the tail of the distribution at k¥ = m. To
explore whether the truncation explanation could account for the
observed final hooks, we plotted predicted versus actual values of
k individually for each position. Predicted values were computed
by tying p to a single value for all positions, obtaining the values
for each k from the geometric distribution determined by p, and
then for each position, subtracting the total probability over all £
from 1 to obtain the probability mass associated with tail of the
distribution for that position. This excess mass was then added to
the value at k = m, producing the quantity p™. Results showed
that the predicted values at k = m consistently underestimated ac-
tual values, even after adding the excess probability mass. There-
fore the truncation explanation alone cannot account for the hook:
people skip back to the start of the sentence more often than can
be predicted by a truncated distribution.

To account for this extra “skip” probability, we introduced an ad-
ditional parameter, p,. This factor expresses the additional ten-
dency of speakers to retrace back to sentence beginning—after
accounting for the probability that they will end up there by suc-



Figure 3: Fits for the frequency of retrace length by position for m = 2 through 7, based on the model in equations 1 and 2. Parameters
were optimized for all m values simultaneously. Frequencies are plotted in the linear domain; points indicate observed values.

cessively retracing back one word at a time. The overall model is
therefore expressed in two parts, one for k£ < m and the other for
k=m:

(1 —p)pk_l(l —ps) fork<m

1
P"(1=ps)+ps fork=m W

Prob(k) = {
When this model was fit with a single value for p; over all posi-
tions however, fitted values deviated systematically from the ob-
served data. Predictions undershot the final hooks at low values
of m, and overshot the hooks at high values of m. Fits for p; indi-
vidually for each value of m revealed that the skip factor depends
strongly on position. For example, when a speaker is only two
words into a sentence, the added probability of skipping back to
the start—after accounting for the probability from the overall de-
cay rate model—is nearly 70%. However by the time the speaker
is four words into an utterance, the skip factor has dropped to
under 5%. By plotting points for the range of position values,
we found that the relationship between position and skip factor is
very well fit by an exponential decay:

ps=Ae " @

where A is a scaling factor that controls the overall rate of skip-
ping, and B is the decay in skip rate associated with position. We
can now propose a unified model for retracing length. The overall
model, which accounts for all positions #, has three parameters—
one to describe the retracing length decay rate and two to describe
the probability of skipping to the beginning of the sentence:

p  probability of retracing one more word
A ps parameter, controls overall rate of skipping
B p, parameter, controls decay of skip rate with m

Using the model in equation 2, we solved simultaneously for the
values of the three parameters that minimized the squared predic-
tion errors in the linear domain (results are similar for minimiza-
tion of prediction error in the log domain). Optimizations were
performed using a single value for each parameter for the set of
all m values. The resulting fits are shown in Figure 3, in linear

rather than log frequency to provide an idea of actual values. As
can be seen, the model provides a close fit to the observed data.
Note that the upward trend for m = 2 is attributable to the final
hook, which as explained earlier has a high value for low values
of m.

3.3. Part-of-speech simulation experiments

Our model fits the overall distribution well, but this does not mean
that it makes the right predictions in any particular sentence. The
simplest case for which our model is a good fit may not necessar-
ily be the correct one. Such a case corresponds to no effect of any
factors other than position on retracing. We tested this null hy-
pothesis by conducting the following Monte Carlo experiments.

We took the set of actually occurring retracings and divided them
into subsets, conditioned on both m and sentence length (since m
itself is constrained by sentence length). For each retracing, we
recorded the part of speech (POS)! of the first word in the retraced
string that the speaker actually produced. Next, we produced for
each sentence a simulated retracing at the indicated position m
by randomly drawing a retrace length from the empirical distri-
bution of k values associated with the m value, broken down by
sentence length. Note that this method uses the observed data (not
our model predictions) to obtain the simulated k& value for each to-
ken, and thus avoids potential circularity. Also importantly, this
method controls for the actual trouble points, since we change
only the retrace length in each case. If the only factor governing
retrace lengths is position, we expect that the POS distribution for
the simulation should roughly match that for the real retracings.

Results, which could not be fully presented here due to space
constraints, show that for the majority of POS types the simula-
tion produced a close match to the empirical values. However the
null hypothesis notably underpredicted values for prepositions,
which were the most frequent location to which speakers retrace.
The model also had a high value for these cases, but not quite

IWe used POS information from the Penn Treebank database of hand-
corrected, machine-assisted natural language annotations [4].



high enough—indicating that speakers appear to have some type
of preference for retracing to preposition boundaries. The model
also overpredicted rates for verbs; speakers appear to have a bias
against restarting from the onset of a verb phrase that is not ac-
counted for by position effects alone.

For the remaining POSs, fits were close to observed values; thus
it is conceivable that a position model alone could explain much
of the POS distribution for retracing. Determiners are a case in
point. It is often noted that speakers retrace to determiner bound-
aries, and indeed speakers did retrace more often to determiners
than to many other POS types. However the simulation produced
about the same rate for determiners as was found in the actual
data, indicating that the prevalence of determiners could be sim-
ply attributed to a correlation with the location of m (for which we
controlled the simulation, see above)—rather than a tendency to
retrace back to this particular POS. A likely explanation is simply
that speakers tend to stop before noun phrases [1]. Further de-
tailed study is needed to understand the relationship between po-
sifion and syntax in retracing, but these results suggest that both
positional and syntactic effects play important roles.

4. DISCUSSION

We found that the probability that a speaker retraces back one
more word is uniform; it does not depend on how far they are
into an utterance, nor on how many words they have already re-
traced. Based on recent work on retracing in simple repeats [1],
one possible interpretation is that speakers retrace to the onset of
the constituent that they are having trouble formulating. Under
this view, a longer retracing could indicate trouble beginning fur-
ther back, on the larger constituent. What remains to be explained
however, is why there is a uniform relationship between the prob-
ability of encountering trouble N words back and encountering
it N + 1 words back, for the overall data set. Another possible
explanation, not mutually exclusive, is that the exponential de-
cay for retracing one additional word is associated with a rem-
poral factor: the more time the speaker needs before continuing,
the further back the speaker will retrace, since the extra words
buy more time (if the speaker is optimizing speaking rather than
silent time). Such a factor should not be ruled out, since hesitation
pauses also show an exponential decay.

The fitted value for p in the model came out to 0.22, correspond-
ing to an average r—phrase length of 1.3 words. Thus it predicts
that in Switchboard there will be acceptable points available for
initiating a retraced string roughly every 1.3 words. An interest-
ing question is whether this value is close to the value one would
obtain based on the distribution of syntactic phrase boundaries.

The parameter values that determine the skip probability are not
directly interpretable. However, it is noteworthy that two val-
ues are needed. Since A adjusts the overall scaling of the rate
and is independent of position, one reasonable hypothesis is that
it represents a stylistic factor associated with certain speakers or
registers. The parameter B, on the other hand, is tied to position,
and therefore may reflect cognitive aspects involved in sentence
processing over time. It is also possible that B reflects some quali-
tative variable associated with position, for example, given versus
new information. Since given information tends to occur early in
Switchboard sentences, perhaps speakers favor full retracings in

these locations because they prefer to retrace given information.
Further analysis of the word content could examine this hypothe-
sis. It seems somewhat unlikely, however, that a qualitative factor
such as given versus new information would show up as a term
in the exponent; a processing explanation seems more consistent
with a constant decay applying at each word.

5. CONCLUSION

We found that the overall distribution of retrace lengths in a large
corpus can be fit well by a model that uses only information
on word position. The model has two components: a constant,
position-independent probability for extending a retrace by one
more word (p), and a position-dependent probability of skipping
back to the start of the sentence (ps). The skip parameter decays
exponentially with position, requiring two added parameters.

For automatic speech processing, since the model uses only word
information, results can be directly applied to aid automatic repair
detection and correction when syntactic information is unavail-
able. If there is good evidence for at least one matched word,
but the retrace length is in question, then overall probabilities for
the retrace lengths can be applied in evaluating hypotheses. If
the sentence beginning is known or hypothesized with high con-
fidence, then the skip probabilities can also be taken into account
when evaluating hypotheses for different retrace lengths.

For psycholinguistics, it is clear that a generative or explanatory
model at the level of individual sentences requires a more detailed
linguistic investigation. As was found in the simulation experi-
ment, the position model alone is not sufficient for predicting the
probabilities of retrace lengths for any particular sentence; some
information on POS or other variables correlated with grammat-
ical phrasing is also needed. Nevertheless, results provide a con-
straint on explanatory models—they must be able to reproduce
the same overall distributions that are effectively estimated by the
simple model proposed here.
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