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ABSTRACT

When using interactive systems, people adapt their speech
during attempts to resolve system recognition errors. This paper
summarizes the two-stage Computer-elicited Hyperarticulate

Adaptation Model (CHAM), which accounts for systematic
changes in human speech during interactive error handling.
According to CHAM, Srage I adaptation is manifest as a
singular change involving the increased duration of speech and
pauses. This change is associated with a moderate degree of
hyperarticulation, which occurs during a low rate of system
errors. In contrast, Stage II adaptations are associated with more
extreme hyperarticulation during a high system error rate. It
entails change in multiple features of speech— including
duration, articulation, intonation pattern, fundamental frequency
and amplitude. This paper summarizes the empirical findings
and linguistic theory upon which CHAM is based, as well as the
model’s main predictions. Finally, the implications of CHAM
are discussed for designing future interactive systems with
improved error handling.

1. INTRODUCTION

When speaking to interactive systems, recent research has
demonstrated that people typically adapt their language during
attempts to resolve system recognition errors (Oviatt,
MacEachern & Levow, 1998; Oviatt, Levow & MacEachern, in
press; Oviatt, Bernard & Levow, in press). This change in
speaking style toward hyperarticulate speech involves a stylized
and clarified form of pronunciation that speakers routinely adopt
when they try to communicate with "at risk"” human listeners, in
adverse environments (e.g., noise), or during
miscommunications. Unfortunately, hyperarticulate speech
introduces difficult sources of variability into the task of spoken
language processing— which has been associated with elevated
rates of system recognition failure (Levow, 1998; Shriberg,
1992).

The goal of the present paper is to summarize CHAM— the
Computer-elicited Hyperarticulate Adaptation Model. CHAM
was developed as a model to account for hyperarticulate
adaptations observed in users’ speech during system error
handling. This paper summarizes the empirical findings and
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linguistic theory upon which CHAM is based, as well as the
model’s main predictions.

2. THE ORIGINS OF CHAM

The CHAM model derives from recent empirical findings, and
has been motivated by theoretical linguistic concepts on the
topic of hyperarticulation.

2.1. Linguistic Theory

Based on experimental phonetics data involving interpersonal
speech, Lindblom and colleagues have argued that speakers
make a moment-by-moment assessment of their listener’s need
for explicit signal information, and they adapt their speech
production to the perceived needs of their listener in a given
communicative context (Lindblom, 1990; Lindblom et al., 1992).
According to Lindblom’s H & H theory, this adaptation varies
actively along a continuum from hypo- to hyper-clear speech.
Hypo-clear speech is relatively relaxed, and contains
phonological reductions. A hypo-clear speech style involves
minimal expenditure of articulatory effort by the speaker, and
instead relies more on the listener’s ability to fill in missing
signal information from knowledge. In contrast, hyper-clear
articulation is a clarified style that requires more speaker effort
in order to achieve ideal target values for the acoustic form of
vowels and consonants, thereby relying less on listener
knowledge. Essentially, Lindblom and colleagues maintain that
speaking style ranges from hypo- to hyper-clear in a way that
contributes substantial variability to the speech signal.

2.2. Empirical Findings

Recent research on human-computer interaction during system
error resolution has analyzed the type and magnitude of speech
adaptations, with a special focus on the acoustic, prosodic and
phonological features of hyperarticulate speech. In these
studies, a semi-automatic simulation method was used for
collecting data on spoken input during system error handling
(Oviatt, MacEachern and Levow, 1998; Oviatt, Levow,
MacEachern and Moreton, in press; Oviatt, Bernard & Levow,
in press). This technique used a random error generation
capability that was adapted to simulate different recognition
error rates (e.g., low, high), different types of recognition error
(e.g., rejections, substitutions), different characteristics of
recognition error (e.g., single error, error spirals), and so forth.

During the test procedure, for example, users input speech such
as: “San Francisco airport,” but received feedback from the
system confirming “San Diego airport.” Following this
simulated substitution error, users then typically responded by
repeating their initial spoken input.



TABLE 1 - SUMMARY OF ABSOLUTE CHANGE IN LINGUISTIC FEATURES OF
STAGE I & Il HYPERARTICULATION, ® BASED ON PAST & PRESENT RESEARCH ”

Linguistic Feature Stage I Change ° Stage I Change
Duration:
Pause interjection +.57 pauses +.32 — +.38 pauses *
Pause elongation + 97 msec +78 — +102 msec
Speech elongation +190 msec +127— +171 msec
Articulation:
Hyper-clear phonology N.S. +6 — +9%
Disfluencies N.S. -25—-25"
Pitch:
Intonation - final fall N.S. +9 —+9% ®
Pitch minimum N.S. -2.2—-27hz
Amplitude:
Amplitude maximum N.S. N.S./+0.3dB

® Values listed represent absolute change from original to repeat input for statistically significant changes (N.S. =
not significant).

® Cumulative data included from past and present research are indicated in regular and bold font, respectively.
Values based on the present research are averages across all error types. Values based on past findings are taken
from Oviatt, MacEachern & Levow (1998).

© Stage T changes were associated with a 6.5% overall error rate per utterances input, and Stage II changes with a
20% rate (upper bounds of the Stage II range based on spiral errors that repeated 1-6 times).

“ Data represent change in average number of pauses per utterance in multiword utterances.

© Data represent change in percent of utterances with a phonological alternation involving a hyperarticulate shift.

® Data represent change in rate of disfluencies per 100 words.

® Data represent change in percent of utterances with a final falling intonation contour.

This simulation method and its novel error generation capability
was used to collect and compare samples of users’ speech
immediately before and after simulated system recognition
errors. These data on matched original-repeat utterance pairs
then were analyzed for the type and magnitude of linguistic
adaptations following different types of recognition error.

Analyses based on these studies have indicated that
hyperarticulate adaptations during human-computer
miscommunication primarily include: (1) change in pause
structure toward more pauses and longer pausing, (2) elongation
of speech segments, (3) suppression of disfluencies, (4) increase
in hyper-clear phonological features, (5) increase in final falling
intonation contours. To a lesser degree, or during focal
corrections in which one syllable or word is singled out for

repair, the following adaptations also typically are found: (6)
expansion of pitch range, and (7) small increases in amplitude
and fundamental frequency (Oviatt, MacEachern and Levow,
1998; Oviatt, Levow, MacEachern and Moreton, in press;
Oviatt, Bernard & Levow, in press).

With respect to the relative magnitude of change in acoustic-
prosodic and phonological features during hyperarticulation,
durational increases were the most prominent. In particular,
adaptation in pause structure dominated the changes observed,
with speech segment increases also noteworthy in magnitude. As
illustrated in Table I, these durational adaptations represented
the only significant change when the rate of system recognition
errors was low. Figure 1 illustrates that comparable durational
changes were observed following different types of system
recognition etror.
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Figure 1. Similarity of Hyperarticulation Profile for Different Error Types
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Articulatory changes also were a moderately prominent
characteristic of hyperarticulate adaptation, including both a
drop in spoken disfluencies and an increase in hyper-clear
phonological features. Examples of change toward a hyper-clear
articulatory pattern include the insertion of previously deleted
segments, fortition of alveolar flaps to coronal plosives, and
shifts to unreduced nt sequences. Essentially, users’ speech not
only slowed down and separated words more distinctly, it also
became more deliberate and better specified in its signal cues to
phonetic identity. As illustrated in Table I, these changes were
not evident during a low rate of errors, but emerged clearly
when the error rate was high. Figure 1 shows that these
adaptations were replicated across all different types of system
recognition etror.

With respect to prosody, speakers shifted to a final falling
intonation contour during error correction, which marked the
close of their repair subdialogue with the computer. This change
also was associated with small decreases in minimum
fundamental frequency. While amplitude increases were reliably
present during corrections, they were negligible in size. The
relative magnitude of change in both pitch and amplitude was
small, as seen in Figure 1, although these changes were
replicated across all types of system error. Table I reveals that
these adaptations were evident only during a high

rate of system errors.

Figure 1 summarizes the striking similarity in users’
hyperarticulation profile across different types of
system recognition error. The most dramatic relative
change in hyperarticulate speech occurred in its
pause structure, durational characteristics, and
pattern of articulation and intonation. However,
smaller relative change also can be seen in Figure 1
in pitch and amplitude. Finally, Table I highlights the
fact that the degree of hyperarticulation in users’
speech is graduated— with only durational changes
observed during a low error rate (i.e., 6.5% error rate
per utterance), but all of the described features
changing during a high rate (i.e., 20% error rate per
utterance).

Percentage gain in feature during repetition

Additional data on hyperarticulate change during
users’ persistent attempts to correct the same error
are detailed elsewhere (Oviatt, Bernard & Levow, in
press), as is data on patterns of hyperarticulation

during focal versus global utterance repairs (Oviatt,
Levow, MacEachern and Moreton, in press).

3. CHAM— MODEL &
PREDICTIONS

The two-stage branching Computer-elicited
Hyperarticulate Adaptation Model (CHAM), which is
illustrated in Figure 2, has been proposed as a unifying
framework to account for these systematic changes in
users’ speech during interactive error handling (Oviatt,
MacEachern & Levow, 1998). According to this
empirically-derived model, Stage I adaptations entail a
singular change in durational characteristics. This stage
is associated with a moderate degree of hyperarticulation
during a low rate of system errors. Stage Il entails
multiple changes in durational, articulatory, fundamental
frequency, and amplitude characteristics. This stage is
associated with a more extreme degree of
hyperarticulation during a high rate of system errors. The
two-stage model basically summarizes a progressive
unfolding of hyperarticulate speech adaptations, as
illustrated in Figure 2.

CHAM predicts that:

users’ speech will adapt toward the linguistically-specified
hyperarticulation profile outlined above, with the type and
magnitude of change in articulatory, durational, prosodic,
fundamental frequency, and amplitude features specified in
Table I

systems characterized by different error rates will elicit
different types of hyperarticulate linguistic features, with
low errors associated with durational change and high
errors with the full range of feature adaptations specified in
Table 1

Articulatory

Amplitude

Baseline Stage |. Low Error Rate Stage II. High Error Rate
Singular change Muitiple changes
(duration) (articulation, duration,

pitch & amplitude)

Figure 2. Computer-elicited Hyperarticulate Adaptation Model (CHAM)



e users’ speech will adapt similarly to different types of
system recognition error

e hyperarticulate adaptations will occur during global repairs
to an entire utterance, and also during focal corrections
involving an individual syllable or word within a larger
utterance

e  hyperarticulate adaptations will be evident immediately
during a first repair attempt, and will persist during
repeated efforts to repair the same error

e  hyperarticulate speech adaptations during system error
handling will be abrupt moment-by-moment transitions
rather than gradual ones

4. IMPLICATIONS

The hyperarticulate speech documented in this research presents
a potentially difficult source of variability that can degrade the
performance of current speech recognizers and complicate their
ability to resolve errors gracefully. One question raised by
viewing the model in Figure 1 is whether an utterance spoken
during baseline conditions can be recognized as identical to its
counterpart during Stage Il conditions. Like Lombard speech,
hyperarticulate speech involves episodic and often abrupt signal
variability that may pose a more substantial challenge to current
recognition technology than more continuous forms of
variability, such as accented speech. The relatively static
algorithmic approaches that currently dominate the field of
speech recognition, including techniques like Hidden Markov
modeling, appear particularly ill suited to processing the
dynamic stylistic variability typical of hyperarticulate speech.
The present research therefore should provide a stimulus for
developing fundamentally more dynamic, adaptive, and user-
centered approaches to speech recognition technology.

This research also has implications for the collection of more
realistic speech data with interactive systems— ones that do in
fact err, and that vary in their error base-rates. It is clear that
alternative approaches to present error handling methods will
need to be explored if improved robustness is to be achieved for
spoken language systems. For example, the design of a
recognizer specialized for error handling is one option. This
approach would require data collection and recognizer training
on a corpus of hyperarticulate speech. Depending on the spoken
language application’s interface design, the special purpose
recognizer could either process speech in parallel with the main
recognizer or be swapped in during correction episodes when
the user is hyperarticulating. Another promising long-term
solution would be to avoid eliciting hyperarticulate speech at all
by designing a multimodal rather than unimodal interface. This
would permit the user to switch to an alternate input mode when
he or she expects or actually encounters a system error. This
option and its advantages have been discussed in detail
elsewhere (Oviatt and vanGent, 1996).

5. CONCLUSIONS

The Computer-elicited Hyperarticulate Adaptation Model
(CHAM) has been summarized, including its theoretical origins
and empirical documentation on its primary features. Predictions

based on CHAM also have been outlined. This model, and the
data upon which it is based, provide detailed information about
hyperarticulate speech changes during system error resolution.
The hyperarticulate adaptations described represent a substantial
dynamic source of speech signal variability, which poses a
serious challenge to current approaches to speech recognition
technology. The implications of CHAM have been discussed for
designing future systems with substantially improved error
handling.
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