AN EFFICIENT MEL-LPC ANALYSIS METHOD
FOR SPEECH RECOGNITION

Hirosht Matsumotot, Yoshihisa Nakatohii, and Yoshinori Furuhata §

TDept. of Electrical & Electronic Eng., Faculty of Engineering, Shinshu University
500 Wakasato, Nagano-shi, Nagano 380, Japan,
IMultimedia Development Center, Matsushita Electric Industrial Co., Ltd.
1006 Kadoma, Kadoma-shi, Osaka, 571-8501 Japan

E-mail: matsu@sp.shinshu-u.ac.jp and nakatoh@arl.drl.mei.co.jp

ABSTRACT

This paper proposes a simple and efficient time domain
technique to estimate an all-poll model on a mel-frequency
axis (Mel-LPC). This method requires only two-fold compu-
tational cost as compared to conventional linear prediction
analysis. The recognition performance of mel-cepstral pa-
rameters obtained by the Mel LPC analysis is compared
with those of conventional LP mel-cepstra and the mel-
frequency cepstrum coefficients (MFCC) through gender-
dependent phoneme and word recognition tests. The re-
sults show that the Mel-LPC cepstrum attains a significant
improvement in recognition accuracy over conventional LP
mel-cepstrum, and gives slightly higher accuracy for male
speakers and slightly lower accuracy for female speakers than

MFCC.
1. INTRODUCTION

In the front end of speech recognition system, it is im-
portant to parameterlize the perceptually relevant aspects
of short-term speech spectrum. In filter-bank based systems,
auditory-like frequency resolution has been incorporated into
parameterlization such as mel frequency cepstral coefficients
(MFCC) [1], perceptual linear predictive (PLP) [2] and mel-
linear predictive (LP) cepstral coeflicients [3]. These param-
eters have been shown to be superior to conventional LP
cepstrum.

On the other hand, the LP analysis has been widely
used as a front end in speech recognition system because
of its computational simplicity and efficiency. However, the
all-pole model approximates speech spectra equally well at
all frequency band, and thus this property is inconsistent
with human hearing. Although the LP spectrum is usually
warped in cepstral or linear predictor domain after LP analy-
sis [4], the frequency resolution is not improved yet by such a
post processing. To alleviate this inconsistency between LP
and auditory analysis, Strube [5] proposed a linear predic-
tion on warped frequency scale based on a bilinear transfor-
mation, and investigated several computational procedures
”autocorrelation” and ”covariance” methods.
This analysis method was proved to be effective in speech
coding [6], and could potentially produce improved cepstral
feature as the MFCC or PLP analysis. However, this method
has been rarely used in speech recognition due to relatively
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high computational load compared to conventional LP anal-
ysis. Another all-pole modeling on mel-frequency scale was
proposed as a special case (y = —1) in the mel-generalized
cepstral analysis method [7]. This method needs an iterative
procedure to minimize a non-linear criterion.

This paper proposes a simple and efficient time-domain
technique to estimate an all-pole model on mel-frequency
axis by Strube based on the error minimization on the lin-
ear frequency axis. The computational cost is only twice
as much as conventional LP method without any approxi-
mation. This technique will be refer to as Mel-LPC analysis
method (hereafter ”warped” will be replaced by "mel”). The
recognition performance of mel-cepstral parameters obtained
by the Mel-LPC analysis is compared with those of conven-
tional LP mel-cepstra and the mel-frequency cepstrum co-
efficients (MFCC) through gender-dependent phoneme and
word recognition tests.

2. MEL-LPC ANALYSIS

2.1 Autocorrelation Method
on Mel-Frequency Axis

In this study, we consider a speech segment of finite length,
z[0],..,z[N — 1], which is usually windowed and preem-
phasized in advance. In the ”autocorrelation” method by
Strube [5], the standard autocorrelation method is applied
to frequency-warped speech signal {#[n]} which is defined by

X(z) =) a7 =X(z)= > z[n]:" (1)

where 371 is the first order all-pass filter,
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Fig.1 illustrates this method. In spectral domain, an all-poll
model &/121(2) approximates the warped spectrum f((e”)
converted from the spectrum X(e”) on the linear frequency
axis by the following phase transfer function of the all-pass
filter;
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Figure 1: All-poll modeling on the mel-frequency axis.

The inverse filter on the mel-frequency axis,

A =) ai

k=0

o =1 (4)

is estimated by Durbin’s algorithm using the following mel-
autocorrelation coefficients:

> #lnliln - m] (5)

n=0

However, as shown in equation (1), since the bilinear trans-
formation of a finite sequence results in an infinite sequence,
the direct calculation of the mel-autocorrelation coefficients
in equation (5) is not practical. Then, Strube proposed three
methods to approximate 7[m] [5]. However, these require a
FFT spectrum or a longer autocorrelation sequence of z[n],
and thus are computationally undesirable from a practical
point of view.

2.2 Mel-Autocorrelation Method
on Linear Frequency Axis

Strube also suggested two time domain methods based on
direct error minimization for z[r] [5]. The total error power
&2 on the mel-frequency axis can be written by the integral
on the linear frequency axis as follows:
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Thus, on the linear frequency axis, the error minimization on
the mel-frequency axis is equivalent to minimize the output
power of fl(z) exited by the pre-filtered signal z.[n] with
W (z) as shown in Fig.2. However, since [n] is an infinite
sequence, this minimization problem is not tractable.
This paper proposes another estimation method in which
W (z) in Fig.2 is removed as shown in Fig.3. This modifica-
tion is equivalent to replacing x[n] in Fig.2 by the signal
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Figure 2: Mel all-poll modeling on the linear frequency
axis.

whose z-transform is X[z]W ~![z]. Therefore, the inverse fil-
ter, which is denoted by /Iw(,%), is no longer the same as fl(%),
but instead ;lw(,%) includes the effect of W_l(z). However,
as will be seen later, this effect can be exactly removed in
the mel-autocorrelation domain.

As a result of minimizing the total error power &2, over
infinite time interval, the mel-predictors @., x’s are obtained
by solving for the following normal equation:

P
D 6li)in, = =6(0,i),  (i=1,..p), (8)
=1

where the coefficient ¢(i, 7) is given by

6(i,5) = > wilnlyln], (9)
n=0

using the output sequence y;[rn] of the ith order all-pass filter
excited by yo[r] = z[r]. In terms of Parceval’s theorem,
&(1,5) can be rewritten on the mel-frequency axis as
. I N R N PN
o1, 9) = %/ |X(ej YW(e’™) | -cos(t — j)AdA.  (10)
-
where V~V(2') is equal to W™'(z). Consequently, ¢(i,j) is
equal to the autocorrelation coefficient 7., (|¢ — j|) whose
Fourier transform is equal to the warped and frequency-
weighted power spectrum |)~((6J>‘)V~V(ej>‘)|2. Therefore, the
normal equation (8) becomes an autocorrelation equation as
in conventional LP analysis.
Most importantly, since ¢(z, 7) is a function of the differ-
ence |i— j|, (7, j) becomes equal to the sum of the following
finite terms without any approximation;
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Therefore, due to the cost for computing N points of y:[n]
for each ¢, the Mel-LPC analysis is accomplished with about
two-fold increase in computation over conventional LP anal-
ysis. This computational load is much lower than those of
both ”autocorrelation” and ”covariance” methods in [5].
Finally, the mel-inverse filter 121(2) is easily obtained by
deriving 7[m] from 7,[m] as follows. Since the z-transforms
of 7] and 7, [m] are | X (2)|? and | X (3)W (2)|?, respectively,
7[m] is exactly calculated from 7,[m] using the equation,

(12)

where 8o = (1 + 02)(1 — 02)—1/2’ and 1 = a(1 — a2)_1/2,
In speech recognition applications, however, 7.,[m] can be

#[m] = Bofulm] + A1 {Fulm — 1] + Fulm + 1]},
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Figure 3: The proposed mel all-poll modeling on the
linear frequency axis.



used, since the estin}ated spectrum er/;lw(,%) represents
the envelope of X(eM)VT/(eM) and VT/(S\) works like a pre-

emphasis.

2.3 Smoothing on Mel-Frequency Axis

The harmonics in lower mel-frequency band become so much
sparse that single harmonics appear as spectral poles. This is
undesirable in all-pole modeling, especially for female voices.
In order to alleviate this problem, the mel autocorrelation
coefficient 7[m] is weighted by a lag window. This lag win-
dowing is similar to a mel-filter bank in the mel LP or MFCC
analysis. In this study, we choose the Blackman and Harris
window as a lag window, and examine its appropriate length
in later experiments.

3. EVALUATION

3.1 Database and Speech Analysis

In this study, we used 520 words uttered by each of 60
male and 60 female speakers from the ATR C-set database.
The recognition performance of mel-cepstral parameters
(MLPC) obtained by the Mel-LPC analysis was compared
with those of conventional LP mel-cepstra (LPMC) and
MFCC through gender-dependent phoneme and word recog-
nition tasks. For three analysis methods, the speech sig-
nal from ATR database was down-sampled to 12kHz. A
speech segment of 20ms with frame shift of 10ms was pre-
emphasized with (1 — 0.95271), and was weighed by Ham-
ming window. A feature vector consists of both cepstral and
delta-cepstral coeflicients excluding the Oth terms (power
terms). The number of cepstral coefficients was set equal
to the predictor length for all-poll modeling and to the num-
ber of filter channels minus one for MFCC analysis.

In the isolated word recognition task, two set of gender-
dependent phoneme HMMs were used; a set of 35 phonemes
and a set of 260 context-dependent phoneme including si-
lence. In the phoneme recognition task, only the first set
was used. The structure of HMMs is a left-to-right model
with 3 emitting states, which consist of 4 gaussians for 35
phonemes and 2 gaussians for 260 phonemes. Each phoneme
model was trained using 520 words from each of 40 speakers
for each gender. All the words from the other 20 speakers
was used for testing. A syntax consists of the preceding and
following silences for a word. In phoneme recognition task,
the results are evaluated in terms of percentage accuracy
(Acc = [(N — S — D —1)/N]-100%), and percentage cor-
rect (Corr =[(N — S — D)/N]-100%), where for N tokens,
S, D, and I are substitution, deletion, and insertion errors,
respectively.

3.2 Phoneme Recognition
(1) Effect of Warping Factor

First, we examines the effect of the warping factor o on
phoneme recognition accuracy. As the bilinear transforma-
tion is an approximation of herz-to-perceptual scale map-
ping, the optimum warping factor is not clear. According to

Table 1: Effect of frequency warping parameter in Mel-
LPC analysis in phoneme recognition.

« Male Female
Acc  Corr | Acc Corr
0.37 | 63.9 74.9 54.9 74.1
0.41 | 64.9 75.0 55.7 74.3
0.50 | 64.4 74.2 55.5 74.0

the mel-herz and Bark-herz transformations [8], [9], the mel
and bark frequency scales are approximated by o« = 0.41 and
a = 0.50, respectively. Then, three values of 0.37, 0.41 and
0.50 were evaluated. Table 1 shows the results of phoneme
recognition for male and female speakers. This table shows
that o = 0.41 gives the best scores for both genders. Al-
though the approximation to the Bark scale seems to be
appropriate as to spectral resolution, the result indicates the
mel scale 1s suitable. This value of a will be used throughout
the following experiments.

(2) Effect of Analysis Order

Second, the performance of three analysis methods were
compared in phoneme recognition task using the set of con-
text independent HMMs. Table 2 shows the phoneme recog-
nition scores as a function of the number of cepstral coef-
ficients. MLPC attains 1.4 to 7.1 percent higher accuracy
depending on the analysis order and genders than conven-
tional LP mel-cepstral coefficients. These differences become
greater in higher analysis order. The performance of conven-
tional LP mel-cepstrum with the order of 18 corresponds to
Mel-LPC cepstrum with the order of about 12. In com-
parison with MFCC, MLPC is slightly better than MFCC
for male speakers, but slightly worse in higher orders than
MFCC for female speakers. This is considered to be caused
by high pitch harmonics of female voices. Insertion errors
are larger for female speakers than for male speakers.

(3) Effect of Lag Window Length

To find out the optimal length of lag window for high pitch
voices, phoneme recognition experiments were carried out
for the analysis order of 14 with the lag window length of
100 to 160. Table 3 shows the scores as a function of the
window length. The window length of about 140 seems to be

Table 2: Comparison of three type of mel-cepstral pa-
rameters in phoneme recognition.
(A) Male speakers

Analysis MLPC MFCC LPMC
Order Acc  Corr | Acce Corr | Acc  Corr
10 60.8 72.5 59.2 73.1 58.2 69.9
14 64.9 75.0 63.2 74.3 61.0 73.3
18 65.8 75.3 65.3 75.3 61.7 73.9

(B) Female speakers

Analysis MLPC MFCC LPMC
Order Acc  Corr | Acce Corr | Acc  Corr
10 50.1 71.4 48.7 73.4 48.7 71.4
14 55.7 74.3 57.6 75.3 48.6 72.9
18 57.5 75.0 57.2 75.0 51.3 73.9




Table 3: Effect of lag-window length for Mel-LPC anal-
ysis in phoneme recognition.

Lag Male Female
[point] | Acc Corr | Acc  Corr
00 64.9 75.0 | 55.7 743
160 65.1 749 | 55.9 754
140 65.0 75.0 | 56.7 75.5
120 64.6 74.8 | 56.7 75.4
100 62.4 74.8 | 56.7 T4.8

Table 4: Comparison of word recognition rates ob-
tained by three mel-cepstral parameters.
(A) Male Speakers

Context MLPC MFCC LPMC
Context Free 92.1 91.5 90.7
Context Depend. 96.3 96.2 95.4

(B) Female Speakers

Context MLPC MFCC LPMC
Context Free 87.2 89.1 84.8
Context Depend. 93.4 94 .4 90.9

best, giving 1.0 percent improvement in accuracy for female
speakers.

3.3 Word Recognition

Using two sets of phoneme HMMs, the performances of
three analysis methods were compared through isolated word
recognition of 520 word vocabulary. The analysis order was
set to 14, and the lag window with a lenght of 140 was ap-
plied only to female speech. As shown in Table 4, the rela-
tive recognition scores among three methods are similar to
those in the phoneme recognition. MLPC attains the high-
est scores for male speaker, but slightly lower scores than
MFCC. The improvements in recognition rate by MLPC and
MFCC over LPMC are larger for female speakers than for
male speakers.

4. DISCUSSION

The Mel-LPC analysis has been shown to be superior to
conventional LPC analysis in speech recognition. While the
performance of the mel-LPC is slightly better than that of
MFCC for male speakers, it is slightly worse than MFCC for
female speakers due to too much frequency resolution in low
frequency band. Although this disadvantage was improved
by lag windowing on the mel-frequency axis, it was unsatis-
factory. Therefore, it might be required to reduce frequency
resolution in lower frequency band while preserving spectral
resolution of close formants. Further improvements are ex-
pected by choosing appropriate time window as well as lag
window.

The performance of the Mel-LPC cepstrum is compara-
ble to that of MFCC, but the Mel-LPC analysis has still an
advantage on computational load over the MFCC analysis.
This method does not need FFT calculation and log conver-
sion. The major computations required are all-pass filtering,

correlation calculation, Durbin’s recursion, and predictor-
to-cepstral conversion. Therefore, the Mel-LPC analysis is
desirable for practical implementation.

5. CONCLUSION

This paper has presented a simple and efficient time do-
main method for mel-scaled all-pole modeling on the lin-
ear frequency axis. The computational cost is only twice as
much as conventional P method, The proposed method has
achieved a significant improvement in recognition accuracy
over conventional LP analysis, and a slightly higher recogni-
tion accuracy for male speakers than the MFCC analysis.

In future work, it is necessary to develop a spectral
smoothing method for high pitch voices, and to evaluate the
performance in noisy speech recognition, and in continuous
speech recognition.
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