SABLE: A STANDARD FOR TTS MARKUP

R. Sproat', A. Hunt?, M. Ostendorf>, P. Taylor®, A. Black*, K. Lenzo®, M. Edgington®

1Bell Labs — Lucent Technologies, 2Sun Microsystems, Inc. ®Boston University,
4CSTR — University of Edingburgh, Carnegie-Mellon University, *BT Labs

ABSTRACT

Currently, speech synthesizers are controlled by a multitude of
proprietary tag sets. These tag sets vary substantially across syn-
thesizers and are an inhibitor to the adoption of speech synthe-
sis technology by developers. SABLE is an XML/SGML-based
markup scheme for text-to-speech synthesis, developed to ad-
dress the need for a common TTS control paradigm. This paper
presents an overview of the SABLE v0.2 specification, and pro-
vides links to websites with further information on SABLE.

1. INTRODUCTION

There is an ever increasing demand for speech synthesis (TTS)
technology in various applications including e-mail reading, in-
formation access over the web, tutorial and language-teaching
applications, and in assistive technology for users with various
handicaps. Invariably, an application that was developed with a
particular TTS system A cannot be ported, without a fair amount
of additional work, to a new TTS system B, for the simple reason
that the tag set used to control system A is completely different
from those used to control system B. The large variety of tagsets
used by TTS systems are thus a problem for the expanded use of
this technology since developers are often unwilling to expend ef-
fort porting their applications to a new TTS system, even if the
new system in question is of demonstrably higher quality than the
one they are currently using.’

SABLE is an XML (Extensible Markup Language)/SGML (Stan-
dard Generalized Markup Language)-based [2, 1] markup scheme
for text-to-speech synthesis, developed to address the need for a
common TTS control paradigm. SABLE is based in part on two
previous proposals by a subset of the present authors: the Spo-
ken Text Markup Language (STML — [4]; and see also [6] for
an even earlier proposal — SSML) and the Java Speech Markup
Language (JSML — [5]).

The SABLE markup language is being developed with the follow-
ing goals in mind:

o Synthesizer control: SABLE enables markup of TTS text in-
put, for improving the quality and appropriateness of speech
output.

e Multilinguality: the tagset should be appropriate for any lan-
guage.

o Ease of use: specialized knowledge of TTS or linguistics

10ne might imagine that the industry “standard”, Microsoft's SAPI,
has solved this portability problem, but this is in fact not the case: only
minimal requirements of compliance are required for a system to be able
to claim that it is SAPI compliant, and thus there is no guarantee that
the same set of tag specifications will yield comparable results when used
with two distinct “SAPI-compliant” systems.

should not be required, though users with such experience
should be able to apply their knowledge.

o Portability: SABLE provides application developers with a
consistent mechanism for controlling synthesizers from dif-
ferent companies and on different computing platforms.

o Extensibility: SABLE includes a mechanism for non-
standard extensions, so it can evolve to support new features
in future releases. To encourage research, SABLE allows
individual synthesizers to support enhanced features with-
out compromising the portability of SABLE text.

SABLE, like its predecessors, supports two kinds of markup: the
first - — termed fext description in STML, and structural elements
in JSML — marks properties of the text structure that are rele-
vant for rendering a document in speech. In the current version
of SABLE, fext description is handled by the DIV tag, whose at-
tribute TYPE may be set to such values as sentence, paragraph
or even stanza; and by SAYAS, which marks the function of the
contained region (e.g. as a date, an e-mail address, a mathematical
expression, etc.), and thereby gives hints on how to pronounce the
contained region. The second kind of markup — STML's speaker
directives or JSML's production elements — control various as-
pects of how the speech is to be produced. Falling into this lat-
ter category are tags such as: EMPH (marks levels of emphasis);
PITCH (sets intonational properties); RATE (sets speech rate);
and PRON (provides pronunciations as phonemic strings).

In both its generality and its coverage, SABLE has many advan-
tages over existing markups such as Microsoft's SAPI [3], or Ap-
ple's Speech Manager control set. Whereas the syntax of other
schemes is typically ad hoc, SABLE's is based on XML/SGML, a
widely-used standard. Secondly, SAPI and other markup schemes
provide tags only for speaker directives, not for text descrip-
tion. Text-description information, for example, that a particular
boundary in a text corresponds to the end of a line in a table (e.g.,
<DIV TYPE="x-11">), can in principle be used by a TTS system
to advantage to produce reasonable speech output that marks au-
ditorily the presence of that boundary. One does not necessarily
want to have to instruct the synthesizer to use a particular into-
nation pattern, or to implement the break in a particular fashion:
one might prefer simply to mark the presence of the boundary in
an abstract way, and assume that the system will do something
reasonable with that information. Text-description is explicitly
designed to allow that kind of abstract specification.

2. TAGS AND ATTRIBUTES

The draft specification of SABLE v0.2 contains the following tags
and attributes; in many cases the meaning of the attribute is fairly
obvious and we dispense with a description in such cases. Full
descriptions of these, and other details, can be found at the URLs

listed in Section 4.. Note that the terms container element and
empty element are standard technical terms in SGML/XML: they
denote, respectively, tags that consist of both a beginning and end
tag, and thus contain enclosed text; versus tags that consist only
of an end tag, and which are thus empty since they contain no
enclosed text.

In addition to the attributes listed, every tag allows the MARK
attribute, which sets an arbitrary mark. This can be used by spe-
cific SABLE-compliant TTS engines to report back to the calling
application that it has reached the given location. The mechanism
for marker callback is defined by each synthesizer implementa-
tion. The requirements are that a marker notification be timed to
the point at which audio output reaches the mark, and that the
notification include the MARK string.

2.1. Speaker Directives

o EMPH (container element): set the emphasis of the con-
tained text.

— LEVEL (numeric, descriptive)

o BREAK (empty element): sets an infrasentential, prosodic
break at current position.

— LEVEL (numeric, descriptive)
— MSEC (numeric)

— TYPE (descriptive): a punctuation symbol that repre-
sents (roughly) the kind of intonation contour to be
associated with the material preceding the break (e.g.
*?' to mark “question” intonation).

o PITCH (container element): sets properties associated with
pitch of the enclosed region.

— BASE (numeric, descriptive)
— MIDDLE (numeric, descriptive)
— RANGE (numeric, descriptive)

o RATE (container element): sets the average speech rate of
the enclosed region.

— SPEED (numeric, descriptive)

o VOLUME (container element): sets the amplitude of the en-
closed region in terms of the available range of the engine.

— LEVEL (numeric, descriptive)
o AUDIO (empty): load and play an audio URL starting at the

given point.
— SRC: URL of audio document

— MODE: specifies whether to play in background or
not

— LEVEL: level of audio relative to surrounding speech

o PRON (container): substitute the specified pronunciation for
what would normally correspond to the contained text.

— IPA: character string in Unicode IPA (International
Phonetic Alphabet)

— SUB: attempt at “phonetic” spelling in the language
of the enclosing text

— ORIGIN: ISO639 identifier for the language of origin
of the enclosed text?

o LANGUAGE (container): specifies the language of the con-
tained text.

— ID: ISO639 identifier for the language

o SPEAKER (container): defines properties of the speaker
speaking the contained text

— GENDER
— AGE (descriptive)

— NAME: “name” of a speaker if a particular engine is
being used

As a sample of the use of some of these tags, consider the
following example from a hypothetical e-mail reader that uses
SABLE markup. Since e-mail readers have access to information
about at least some structural aspects of the input — e.g. header
information about the sender, subject and date, this information
can be used to control the synthesizer's behavior in useful ways.:

< DIV TYPE="paragraph”>New e-mail from
<EMPH> Tom Jones</EMPH>

regarding <PITCH BASE="high” RANGE="large”>
<RATE SPEED="-20%">latest album </RATE>
</PITCH>.</DIV>

<AUDIO SRC="beep.aift”/>

The subject information (“latest album”) is highlighted au-
ditorily by setting a higher base pitch and larger pitch range,
and by slowing down the speech by 20%. Finally, the header is
terminated by an audible beep (“beep.aiff”).

2.2. Text Description

o SAYAS (container): define mode in which contained text is
to be said.

— MODE: description of mode (e.g. date, time, phone,
currency . . .) in which contained text is to be read

— MODETYPE: secondary specification further quali-
fying MODE (e.g., date is read as day-month-year)

o DIV (container): classifies the contained region as a struc-
tural text type of type TYPE

— TYPE: type of the division (e.g. sentence, paragraph)

As an instance of the SAYAS tag, consider the rendering of the
date “4/5/98” via the U.S. versus non-U.S. methods. These two
ways of expanding the string can be specified as:

<SAYAS MODE="date” MODETYPE="MDY"”>4/5/98 </SAYAS >

and

2180639 defines two-letter language codes for around 140 languages.
For example, “de” identifies German.

<SAYAS MODE="date” MODETYPE="DMY " >4/5/98 </SAYAS>

respectively. Specifications of this kind are unavailable in
other inline markup schemes (e.g. SAPI), but they are useful
since they have the potential to reduce cross-synthesizer incon-
sistencies. That is, without SAYAS specifications of the kind
specified above, one cannot control whether a new system will
pronounce “4/5/98” as “April 5, 1998” or “May 4, 1998”. The
behavior for SABLE-compliant engines is, however, guaranteed.

2.3. Miscellaneous Tags

o ENGINE (container): substitute the DATA for the contained
text if the system happens to be using the engine specified
by ID.

— ID: id for the TTS engine

— DATA: character string to be substituted for the con-
tained text

o MARKER (empty): anchor point for MARK attribute (see
below) not otherwise associated with a tag.

o SABLE (container): specifies the document as a SABLE
document.

2.4. Non-Standard Extensions to SABLE

SABLE is designed to function as a well-defined standard in
which the same text will be handled consistently by multiple syn-
thesizers. SABLE is also intended to function as a tool for re-
search on speech synthesis and as a tool for innovation. As such, it
is expected that research systems will support tags, attributes and
attribute values not defined in the SABLE specification, and that
SABLE text will be generated for specific systems which include
those tags and attributes. Where such extensions prove useful and
become generally supported, they can be proposed as an addition
to the standard specification.

To clearly distinguish tags, attributes and attribute values that are
non-standard, they should include an “X-” prefix and optionally
an engine identifier. A non-standard tag for providing an
engine-specific pronunciation string would look like:

<X-ME-PRON PHON="1" DUR="120"/>

where ME is “My Engine” and the X-ME-PRON element
inserts an /i/ phoneme with a duration of 120 msec understood
by “My Engine”. Here, because the PHON and DUR attributes
are embedded in a non-standard element, they are implicitly
non-standard attributes. A non-standard attribute of a standard
tag would look as follows:

<PRON X-ME-PHONES="ka:t”>cat< PRON>
or

<EMPH LEVEL="strong”
X-PITCHACCENT="H*+L"”>word </EMPH>

The first example provides the pronunciation for car in a
format that is understood by “My Engine”. Other synthesizers
will ignore the attribute. The second example includes both a
standard attribute — LEVEL — and a non-standard attribute —
X-PITCHACCENT. A system that understands the non-standard
attribute will apply the “H*+L” accent when producing string
emphasis on “word”. (The engine identifier need not be used,
as in the X-PITCHACCENT example, particularly for attributes
that may be recognized by more than one synthesizer.)

Finally, a non-standard attribute value might look like:
< DIV TYPE="x-dialog-close”>...</DIV>

The “x-dialog-close” is a non-standard value of the stan-
dard TYPE attribute which is currently specified as being either
“sentence” or “paragraph”. This non-standard value could
indicate that the contents of the element are the end of a dialog
turn.

If an engine gets a non-standard tag, attribute or attribute value
in its input text that it does not know, it simply ignores it. For
example, in the X-ME-PHONES example, a synthesizer that ig-
nores the tag will try to say the word cat. Wherever possible,
non-standard tags and elements should be designed so that output
is not substantially impacted if ignored.

3. FURTHER ISSUES

This section addresses two issues: adding support for new TTS
engines in SABLE, and generating SABLE markup for multiple
TTS engines.

3.1. Adding support for a new TTS engine

A SABLE parser may be implemented as either an SGML-based
language or as an XML-based language. XML is a subset of
SGML offering a simpler definition of markup languages that are
easier to implement.

As most synthesizers already have their own idiosyncratic markup
language, the simplest method for implementing a SABLE inter-
preter is by translating the SABLE tags directly into the particular
synthesizer's own markup escape sequences. There are a number
of free XML parsers, and such translations can even be done di-
rectly in languages such as PERL. A complete translation of the
file in a pre-processing stage will be sufficient for many cases,
though when the input files are very big, a more integrated ap-
proach may be required.

When a particular engine does not support a tag it can (mostly)
ignore the tag and simply synthesize the text contained within it.
The tags are designed such that this is a reasonable fallback po-
sition as it is well known that different TTS engines may support
quite different functionality. Where ignoring tags becomes prob-
lematic is in the SPEAKFER and LANGUAGE tags.

We have allowed an engine-independent mechanism for specify-
ing speakers but when a desired GENDER/AGE does not exist,
the implementation should make a reasonable decision. Often a
document may simply require one voice, plus an alternate voice

the gender/age of which is not crucial. Although the NAME at-
tribute may be used to specify a speaker by name, that is usu-
ally not going to work across engines: one possible solution —
one which has not yet been agreed upon — is to allow a few
standard names that an implementation should normally define,
e.g. MALEIL, MALE2, FEMALE1, FEMALE2, and VOICE],
VOICE2 when gender is not relevant. Such a mechanism is more
likely to work across engines.

Dealing with the LANGUAGE tag when an engine does not sup-
port that language is a more difficult task. In the Festival im-
plementation of SABLE, for example, the system simply says
“Something in X” when a section of text is within marked as be-
ing of language X, where Festival does not support that language;
there is of course some question about which language this com-
ment should be said in.

3.2. Generating SABLE markup for multi-
ple TTS engines

By using the ENGINE tag it is possible to make use of engine-
specific functionality, but the intended use of SABLE is where
the markup text is generated quite independently of the engine
used to render it as speech. In fact, one can imagine the synthesis
engine running on a local machine while the text is generated by
some web-based application elsewhere on the net: the advantage
of this is that relatively low bandwidth will be required between
the machines and high quality audio can be generated locally.

When writing applications that generate SABLE markup it is easy
to write in a TTS-engine-independent way. Using relative and de-
scriptive values for attributes such as the PITCH and RATE tags is
much more likely to work across synthesizers than absolute val-
ues. Also given that engines may potentially ignore tags when
they do not support the functionality, the text can be arranged such
that this will still sound reasonable.

Since we primarily see SABLE markup being generated by ap-
plications rather than written by hand, using an existing standard-
ized markup paradigm makes this much easier. We also envisage
stand-alone applications which can translate existing structured
documents into SABLE markup. For example, e-mail messages
are structured, and a conversion program could be written that
marks headers, quoted sections etc. using SABLE tags that would
allow any SABLE-compliant TTS engine to render it reasonably.
Converters for existing document formats such as I§[zX and MS
Word could also be written.

In the case where the document format is already an XML/SGML
type language, such as HTML, existing document translation sys-
tems can be exploited. HTML may be augmented with cascading
style sheets (CSS) (http://www.w3c.org/css/) which would make
translation to SABLE very simple.?

31t has often been suggested that rather than use a speech specific
markup such as SABLE, it would be better to develop mechanisms for
spoken interpretation of existing tags in other visual markup languages
such as HTML or Latex. This direct interpretation approach is unattrac-
tive for a number of reasons. SABLE can be used as an interface language
in systems for which HTML would be inappropriate, for instance when
coupling a natural language generation system with a speech synthesizer.
Leading on from this, there are tags in SABLE which are speech spe-

4. FURTHER INFORMATION

A number of SABLE-related resources are publicly available.
The latest draft of SABLE, along with the latest SABLE
XML DTD, can always be found at the following web ad-
dresses: http://www.bell-labs.com/project/tts/sable.html, and
http://www.cstr.ac.uk/sable.html. One can also find on-line de-
mos of subsets of SABLE at those sites. Experimental tools for
SABLE will also be available at the Edinburgh site: XML-based
parsers/interpreters will be available to interface between SABLE
and Festival (http://www.cstr.ed.ac.uk/projects/festival.html),
and between SABLE and the Bell Labs/Lucent Technologies TTS
system. The tools can be downloaded and adapted for one's own
favorite TTS system, or else they can be used as the basis for de-
veloping one's own SABLE application.

Finally, there is an e-mail discussion group for SABLE. To join
this, send a message to sable-subscribe@east.sun.com. To suc-
ceed as a standard that benefits both commercial and academic
users, it is important for SABLE to be designed with input from
many sources. In addition to informing the speech community of
the status of the SABLE initiative, it is our hope that this paper
will increase participation and interest in its development.

5. REFERENCES

1. World Wide Web Consortium Working draft:
ble markup language (XML) version 1.0 part 1:
http://www.w3.org/TR/REC-xml, 1998.

2. Goldfarb, C. The SGML Handbook. Oxford, 1990.

3. Microsoft. Microsoft Speech Software Development Kit Devel-
oper’s Guide, version 2.0 ed. Microsoft, Redmond, WA, 1996.
Version 2.0.

4. Sproat, R., Taylor, P., Tanenblatt, M., and Isard, A. A markup
language for text-to-speech synthesis. In Proceedings of the
Fifth European Conference on Speech Communication and
Technology (Rhodes, 1997), ESCA.

Extensi-
Syntax.

5. Sun Microsystems, Inc. Java Speech Markup Language spec-
ification. http://java.sun.com/products/java-media/speech/,
1997.

6. Taylor, P., and Isard, A. SSML: A speech synthesis markup
language. Speech Communication 21 1996.

cific, such as PRON, It would be unreasonable to expect designers of
visual markup languages to incorporate such tags in their markup and
even if they did it would be unreasonable of authors of documents in that
markup to specify PRON tags as they would seem irrelevant for most pur-
poses. Finally, SABLE is intended as a standard synthesizer interface -
if a speech specific markup language was not used, a separate interpreter
would have to be built for each markup language for each synthesis sys-
tem, To speak documents authored in other markup languages we advo-
cate building markup language filters, that convert from visual markup to
SABLE. That way, only one filter need be designed for each visual markup
language, and builders of synthesis systems need only build an interpreter
for SABLE.

