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ABSTRACT

This paper proposes a modified parameter mapping
scheme for parallel model combination (PMC) method.
The modification aims to improve the discriminative
capabilities of the compensated models. It is achieved by
the rearrangement of the distributions of state models in
order to emphasize the contribution of the mean in the
following process. Both distributions of speech model and
noise model are shaped in cepstral domain through a
covariance contracting procedure. After the compensation
steps, an expanding procedure of the adapted covariance
is necessary to release the emphasis. Using this process,
the discriminative capability is increased so that the
recognition accuracy is improved. In this paper, the
recognition of Chinese names demonstrates the
improvement to the original PMC method, especially
when SNR is low.

1. INTRODUCTION

A different environmental noise, which does not appear in
the training data for reference models, is known as a
critical factor which degrades the recognition accuracy
seriously [1]. Many studies have been conducted to
diminish the effect caused by the additive noise [2][3].
Among the studies, the parallel model combination (PMC)
technique has been successfully developed to adapt the
models trained by clean speech with the reference of
environmental noise [4]. The statistical models of speech
are expressed in cepstrum domain, while the effect of
environmental noise is additive in linear spectral domain.
To incorporate the noise statistics into speech models, a
mapping for model parameters between cepstral domain
and linear spectral domain is necessary. In the literature
[5], a closed-form formulation was derived for the model
transformation based on a log normal assumption.

In this paper, the transformation scheme is modified to
obtain a better discriminative capability for pattern
classification. The modification is done by shaping signal
models; including speech models and noise models. The
statistics models are rearranged in cepstral domain so that
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the vicinity of cepstral means are emphasized in the
mapping. The shaping process is accomplished by
contracting the covariance of a state model in cepstral
domain using a scalar factor. Both covariance matrices of
state models of speech and noise are divided by a same
factor for the contraction. After the models are adapted in
linear spectral domain, they are transformed back into
cepstral domain and the covariance terms are expanded by
the same factor to release the emphasis. The effect
resulted from the procedure can be observed in the
improvement of the discriminative capability of the
adapted models. The improvement is quite significant to
the test condition at low SNR, and is useful to the noisy
speech recognition. This modified PMC method is termed
weighted PMC (W-PMCO).

This paper is organized as follows. In section 2, the
original PMC method is briefly reviewed and a
modification in the model mapping is introduced. In
section 3, A discriminative test on selected vowels shows
the effect by the modification. In section 4, a recognition
task of Chinese names under the corruption of additive
noise is conducted to evaluate the W-PMC method.
Finally, a conclusion is given in section 5.

2. WEIGHTED PARALLEL MODEL
COMBINATION

2.1. Review of Parallel Model Combination

Parallel model combination (PMC) method adapts speech
models to the test condition with additive noise as follows.
Assume that the observation function of speech model is
Gaussian, which can be characterized by a mean and a
covariance {u°,X°}. In this paper, the super script ¢
means a parameter in cepstral domain and / means that in
log spectral domain. The speech to be recognized is often
represented in cepstral domain, while the noisy speech is
the addition of background noise and the speech in linear
spectral domain. To match the test condition, the model
parameters of clean speech have to be transformed into
linear spectral domain for incorporating the statistics of

background noise {/I;f} The transformation can be

divided into two sequential stages. At the first stage, the
model parameters in log spectral domain are derived from
the cepstral domain by the inverse discrete cosine



transform (IDCT, denoted by C™),
‘Lll — C*luc‘ and Zl — CflzC(Cfl)T,

where a super script 7 means a transpose of a matrix. At
the second stage, based on a log normal assumption [5],
the i-th component of the mean vectorgt and the

covariance in the linear spectral domain can be computed
by

#; = exp(y/ + o, /2) and Gy = Wil [CXP(G;) -1.

Assuming that the speech and noise are independent and
additive in linear power spectral domain, the adapted
mean and covariance can be obtained by

/3i=glli+lzand é‘lj:g26ij+€ij’

where factor g is a gain term providing the match of signal
power to test condition. Assuming that the combined
distribution in linear spectral domain is log normal, the
above mapping process can be straightforwardly inverted.
Therefore, the linear domain parameters are transformed
back to the log spectral domain by

& =log(@) - 0. 510g[% + 1]

a.
and &, = IOg[/ﬂ,Z_d +1],
2]

and secondly, back to the cepstral domain by

& =C@ and 5 = Cg'C’.

2.2 Modified Parameters Mapping Scheme

In the above model adaptation scheme, the model
parameters in linear spectral domain are the consequence
of the mapping from log spectral domain. As the Gaussian
distribution is concerned, the neighborhood of the mean is
the portion with the highest density and that keeps the
most discriminative information from the other
distributions. If a distribution in log spectral domain is
shaped so as to emphasize the vicinity of mean, the
corresponding distribution in linear spectral domain will
account for the change. Using this concept, if the
observation function of model states are properly shaped
in log spectral domain, the combination of parameters in
linear spectral domain will be the consequence that keeps
the dominant information, and the adapted models will be
more efficient to pattern classification. Intuitively, the
emphasis of the mean can be achieved through a
contraction of the covariance. This procedure can be
performed before the mapping of parameters by dividing
the covariance of all signal models in log spectral domain
with a pre-defined factor.

Once the models are adapted, the covariance in log
spectral domain are expanded by multiplying the same
factor for the succeeding pattern classification. The
expanding process is necessary because it keeps the
modified mapping process as an unitary transformation.
On the other hand, the previous emphasis of the mean
destroys the strategy of the training model in the sense of
maximum likelihood, and results in a degradation of the
performance of pattern matching. The expanding process
could be a remedy to the problem. The contract-and-
expand of covariance in log spectral domain also can be
performed in the cepstral domain because of the linearity
of IDCT. The adaptation method with the contract-and-
expand procedure is termed weighted parallel model
combination (W-PMC) method in the study, since the
highlight of the mean can be considered as a weighting
operation to performing original Gaussian integration. The
effect by the W-PMC will be demonstrated in the
following discriminative test and a recognition task.

3. DISCRIMINATIVE TEST

The benefit gained from the covariance contract-and-
expand operation is primarily demonstrated by a
discriminative test of vowels. Five vowels, /a/, fe/, /i/, o/,
and fu/ were uttered by a male speaker in a quiet
environment. The speech wave forms were digitized in 8
kHz and the mel-cepstrum analysis is applied for each
0.032 second to obtain 12 mel-frequency cepstrum
coefficients (MFCCs) as a feature vector [7]. Assume that
the distribution of feature vector of a vowel is Gaussian
and its model parameters can be obtained by

1 W 1 M r
mv = Vzicv.t andzv = Vzi(cv.t - mv)(cv.t - mv) b
v I= v =
where v indicates one of the five vowels, ¢ is the frame
index, and N, is the total number of frames of an

observation of v. A confusing model of v, denoted by v,
is defined for which one is not v but gives the largest
likelihood for an observation of v, i.e.,

v = argmaxlog(N(o,;m,,X,)).
U#v

A discriminative scoring of an observation of v is defined
by the likelihood ratio

def .
Sc, =log(N(o,;m,,XZ,)) —log(N(o,;m;,2;)).

At first, the discriminative scoring is applied to the clean
utterances with respect to the clean speech models.
Resulting scores and correspondent confusing vowels are
tabulated in Table 1.1. The clean speech of five vowels
are artificially added with Gaussian white noise and
babble noise, extracted from NOISEX-92 database, in
SNR 20dB, 10dB, and OdB to generate the noisy speech.
Corresponding to the test SNR and the noise type, the



model parameters of clean speech are adapted using W-
PMC method parameterized by four contract-and-expand
factors, 1, 2, 5, and 10. The scoring procedures are
applied to the noisy speech with respect to the adapted
models and the results are listed in Table 1.2 and Table
1.3 for both noises. For each case, it is observed that the
average score becomes smaller as the noise power
increasing. This phenomenon may explain the degradation
of noisy speech recognition, that the additive noise blurs
the difference among templates even a compensation
scheme was applied to them. In the case of additive
babble noise, the discriminative scores increase when
incorporating a bigger contract-and-expand factor. The
trend is still kept for the case of white noise in 10dB and
0dB. For the case of white noise in 20db, the scores get
smaller as applying a bigger contract-and-expand factor.
However, the score is still high enough for effective
pattern classification. From the results, it implies that the
modified mapping process of model parameters is more
beneficial for the speech recognition in low SNR.

Table 1: Confusing vowels and their discriminative log
likelihood scores with model adaptation using W-PMC.

Y e/ i/ fof fu/ || Average
1 || 0/555.2 | u/285.6 | u/138.5 | u/138.5 [ w/111.6 || 226.6
2 || 0/582.4 | u/299.6 | u/146.4 | u/122.5 | ¢/43.6 238.9
5| 0/591.2 | v/304.7 | v/153.2 | u/131.4 | e/44.8 245.1
10| 0/593.2 | u/306.1 | u/155.8 | u/134.8 | e/45.4 247.1
10dB
I el i/ fof fu/ || Average
1 || o/141.5 | v/72.2 | vw/71.0 | u/45.9 | 0/27.6 71.7
2 || 0/159.8 | u/84.0 | uw/73.4 | u/50.3 | 0/26.6 78.8
5 0/172.9 | v/93.3 | uw/74.9 | u/53.8 | 0/27.1 84.4
10| 0/177.6 | 1v/96.9 | u/75.5 | u/55.1 | 0/28.4 86.7
0dB
Y e/ i/ fof fu/ || Average
1| 0/35.7 | v/15.8 | u/28.7 | v/10.8 | 0/10.7 20.3
2 || 0/38.3 | v/16.7 | u/30.8 | u/10.4 | o/11.0 21.4
S5 w402 | v/17.4 | v/32.3 | v/10.0 | 0/18.6 23.7
10| v/40.8 | u/17.7 | u/32.9 u/9.9 0/22.3 24.7

Reference Models of Clean Vowels
o faf fe/ i/ fof fu/ || Average

NAJ 0/772.3 | u/404.5 | v/721.2 | v/286.9 | 0/43.8 || 435.7

Table 1.1: Under quiet environment (NA: No model
adaptation in this case)

20dB
o fa/ le/ fi/ Jo/ fu/ Average
1 [o/510.6 [ u230.1 [ w2942 [u297.9 | e/303 | 2726
2 [[0/494.8 | w2203 [ 1/299.0 [ w2904 | e28.24 | 266.5
5 || 0/486.5 | u/218.1 | v/302.3 | u/283.3 | ¢/25.9 263.2
10 || 0/484.0 | u/218.4 | u/303.5 | u/280.1 | ¢/25.2 2622
10dB
i I fe/ A/ fo/ fu/ || Average
1 o044 w983 Ju1194 [ w1380 e219 | 964
2 [[o/118.1 [ w106.8 | w1234 [ w316 | e173 | 99.4
5 || 0/133.8 | u/112.4 | v/126.6 | v/129.6 | ¢/16.7 103.8
10 || 0/140.8 | v/114.3 | v/127.8 | u/129.2 | ¢/17.0 105.8
0dB
o fa/ le/ /i/ Jo/ h/ Average
1 o386 [ wssa | wass | aia26 | /64 || 342
2 [ 0/43.9 | w409 | u55.0 | a/43.7 | e10.7 || 3838
5| o/45.7 | uw/45.6 | u/59.2 | a/44.5 e/11.4 41.3
10| 0/46.2 | u/47.4 | u/60.7 | a/44.7 e/12.1 422

Table 1.2: Contaminated by Gaussian white noise in
20dB, 10dB, and 0dB. (o , contract-and-expand factor for
W-PMC)

(i 20dB (i

Table 1.3: Contaminated by babble noise in 20dB, 10dB,
and 0dB. (« , contract-and-expand factor for W-PMC)

4. RESULTS ON NOISY SPEECH
RECOGNITION

A Chinese name recognition task was conducted to
evaluate the performance of using W-PMC method. The
database of Chinese names were collected from 18 males
and 11 females in a quiet environment. Each speaker
pronounced a name list once, in which one list was
consisted of 120 Chinese names. There are about three or
four Mandarin syllables for each piece of name. The
speech data from 12 male and 7 female speakers were
collected as the training data (about 2/3 of the database)
and the remains were the test data. The speech waveform
was digitized in 8 kHz and segmented into frames of
32ms with 50% overlap. Speech features were extracted
frame by frame from a mel-frequency analysis using a
20-filter bank. The feature vector compromised 13 mel-
frequency cepstrum coefficients (MFCCs), include a
zeroth term required in the model adaptation only, and
12 delta MFCCs.

In the experiment, each Mandarin syllable is represented
by a concatenation of context-dependent sub-word
models. These sub-word models can be classified into
two categories, one is a set of initials which include their
transition portions and the other is a set of finals. The
initial model and the final model are consisted of three
states and four states, respectively. The observation
distribution of each state is a mixture of four Gaussian
probability densities. Full covariance matrices are used
in the compensation process, while only the diagonal
components are adopted to compute the likelihood scores
for simplicity.




The noisy speech is generated by artificially adding three
types of noises, Gaussian white, babble and factory
noises, extracted from NOISEX-92 database, to the
speech waveform in five SNR’s. The noise model is
trained from the noise data of 2 seconds, which is
modeled by one state with a mixture of two Gaussian
densities. A baseline system is the one without any noise
compensation scheme. Four contract-and-expand factors,
1, 2, 5, and 10 are experimentally applied in W-PMC
method to compare their effects. In case of using 1 as the
factor, W-PMC is equivalent to the original PMC. In the
experiments, only the MFCC portion of speech models
are adapted, leaving the delta portion unchanged. The
gain term g is set to 1 for all cases without loss of
generality. The results in terms of recognition error rates
are listed in Table 2. The improvement by using W-PMC
method is obvious for the selected additive noises,
especially when SNR is lower than 10dB. Furthermore,
the increasing of ¢ tends to decrease the error rates
when the SNR is low. However, the results are not
consistent in some cases where the SNR is high. For
example, in the case of 20dB white noise, the error rate
increases from 6.3% to 6.8% when contracting factor
changes from 1 to 10. The results are consistent with the
discriminative test, where the discriminative scores are
increased at low SNR and decreased at high SNR when
incorporating with a larger contract-and-expand factor.

White 20dB  15dB  10dB 5dB 0dB
No adaptation 7.1 14.4 31.6 61.8 87.5
PMC 6.3 9.3 17.9 37.2 64.8
W-PMC(2) 6.5 9.5 16.6 29.9 559
W-PMC(5) 6.6 9.8 16.4 29.6 53.8
W-PMC(10) 6.8 9.9 16.7 29.9 53.4
Babble 20dB  15dB  10dB 5dB 0dB
No adaptation 5.4 9.7 224 57.5 87.8
PMC 4.0 52 9.1 23.1 58.5
W-PMC(2) 3.8 52 8.8 20.1 52.1
W-PMC(5) 3.9 5.1 8.9 19.6 49.6
W-PMC(10) 4.1 5.1 9.2 19.2 50.2
Factory 20dB  15dB  10dB 5dB 0dB
No adaptation 5.2 10.0 25.6 59.0 89.0
PMC 4.5 6.8 11.5 26.8 64.8
W-PMC(2) 4.4 6.6 10.8 22.7 55.8
W-PMC(5) 4.6 6.5 112 21.8 53.3
W-PMC(10) 4.4 6.3 11.3 22.2 52.8
Table 2: Chinese names recognition error rate

compensated by PMC and W-PMC(o) for the
contamination of white, babble, and factory noise,
respectively.

5. CONCLUSION

In this study, we introduce a modified scheme for the
mapping of the model parameters in the parallel model
combination method. Using the modification, a contract-
and-expand procedure of the covariance, the
discriminative capabilities of the adapted models are
improved. The effect will be more significant by assigning
a bigger contract-and-expand factor in low SNR.
Therefore, the proposed method is useful to improve the
recognition accuracy of noisy speech, especially at low
SNR.
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