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ABSTRACT

Previous studies showed that a significantly enhanced
recognition performance can be achieved by incorporating
information about HMM duration along with the cepstral
parameters. The reestimation formula for the duration pa-
rameters have been derived in the past using fixed segmen-
tation during K-means training and the duration statistics
are always fixed throughout the additional minimum string
error (MSE) training process. In this study, we update
the duration parameters along with other model parameters
during discriminative training iterations. The convergence
property of the training property based on the MSE ap-
proach is investigated, and experimental results on wireline
connected digit recognition task demonstrated a 6% word
error rate reduction by using the newly trained duration
model parameters as compared to fixed duartion parame-
ters during MSE training.

1. INTRODUCTION

Explicit duration modeling has been shown to increase the
effectiveness of hidden Markov models (HMM) in automatic
speech recognition [1, 3, 10, 11, 14]. The HMM’s to be dis-
cussed in this paper are based on continuous, mixture den-
sity models of the distribution of LPC derived parameter
vectors [8]. In this study, we present results that demon-
strate major improvements in our ability to recognize un-
constrained strings of connected digits. We show that by
incorporating new information about HMM duration along
with the cepstral parameters, we can significantly enhance
recognition performance. For scoring a given observation
sequence using the internal duration model; a recursion of
the Viterbi procedure is required. The recursion is consider-
ably more costly than the implementation of the standard
Viterbi scheme [8]. The post-processor durational model,
on the other hand, uses the original Viterbi alignment pro-
cedure. Then for each word, the optimal model sequence
is determined, and the duration of each model is obtained
via a backtracking procedure. The loglikelhood is then aug-
mented by the log duration probabilities (suitably weighted)
to give the final score for the recognition decision, as shown

log(S") =log(S) +a Y _log(P;(dy)), (1)
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where dj is the number of frames occuring in model j, Py is
the duration probability of jth model, « is experimentally
determined positive scaling constant and N is the total num-
ber of models in the model sequence of the given word. The
model duration is modelled by a Gamma distributuion with

Pld) = a2, (2)

with parameters v and n and with means 2 and varaiance

n%' The reestimation formula for n and v have been derived
in the past using fixed segmentation during K-means train-
ing and the duration statistics is always fixed throughout
the additional MMI or discriminative or corrective training
process [6, 8, 15]. The performance of speech recognition
can be further improved by accurately modeling the dura-
tion of short speech events [10, 11]. In this study, we update
the duration parameters along with other model parame-
ters (mean, variance, mixture weights) during discrimina-
tive training iterations. The duration mean and standard
deviation parameters are calculated using new segmenta-
tions which are obtained by using the current MSE-trained
models for each given utterence in a sequential manner as
exemplified in this study.

2. DISCRIMINATIVE MODEL PARAMETER
ESTIMATION

We have used two methods for obtaining estimates of the
HMM parameters namely the conventional MSE algorithm
(HMM-I), and a more effective MSE training procedure
which updates both the duration parameters along with
other HMM parameters (HMM-II). The segmental K-means
training procedure was used [7] to obtain an initial maxi-
mum likelihood estimation (MLE) based boot model for the
subsequent discriminative training. The MSE training di-
rectly applies discriminative analysis techniques to string
level acoustic model matching, thereby allowing minimum
error rate training to be implemented at the string level [8].
A brief formulation of the MSE algorithm using generalized
probabilistic descent (GPD) method is as follows:

e A discriminant function in MSE training is defined as
g(0, Sk, A) = log f(O,©s,,Sk|A),

where Sk is the k-th best string, A is the HMM set
used in the N-best decoding, Ok is the optimal state



sequence of the k-th string given the model set A, and
log f(O,0®s,, Sk|A) is the related log-likelihood score
on the optimal path of the k-th string.

e The misclassification measure is determined by
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d(Oa A) = —g(O, SCa A) + log N —1

which provides an acoustic confusability measure be-
tween the correct and competing string models.

o The loss function is defined as

1
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where v is a positive constant, which controls the slope
of the sigmoid function.

e The model parameters are updated sequentially ac-
cording to the GPD algorithm
Ant1 = An—€eVIO,A), (3)
Ay is the parameter set at the nth iteration, VI(O, A) is
the gradient of the loss function for the training sample
O which belongs to the correct class ¢, and € is a small
positive learning constant.

During the model training phase, we call one complete pass
through the training data set as an epoch. For the case of
HMM-I based on string-by-string training, model parame-
ters are updated several times over an epoch. Moreover the
duration statistics are accumulated for every string and up-
dated once over an epoch at the end of each MSE training
iteration for HMM-II. Let L(¢, ) be the segment length for
1th segment of yjth HMM model, N; be the total number
of segments for jth model. Then the new mean and stan-
dard deviation estimates of the duration distribution can
be determined for each model j as follows:
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Note that the HMM mean, variance and the mixture
weights are updated sequentially for every given utterence
where as the HMM duration parameters are updated once
the entire training set is processed. And the combined se-
quential and batch updating process continues until the
MSE training reaches the required number of iterations.

3. FRONT-END PROCESSING

The speech input is sampled at 8kHz and preemphasized us-
ing a first-order filter with a coefficient of 0.95. The samples
are blocked into overlapping frames of 30 msec in duration,
where the overlap is set to 20 msec. Each frame is win-

dowed with a Hamming window and then processed using
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Figure 1. Typical energy measurement contours for the ut-
terance “1". The top plot shows the original speech energy,
middle plot shows the speech classification and the bottom
plot provides the background adaptation.

a 10th-order LPC analyzer. The LPC coefficients are then
converted to cepstral coefficients, where only the first 12
coefficients are retained. The basic recognizer feature set
consists of 36 features that includes the 12 liftered cepstral
coeflicients and their first and second order derivatives [15].
Besides the cepstral based features, the normalized energy
contour and its first and second order time derivatives are
also computed. Thus, each speech frame becomes repre-
sented by a vector of 39 features. Note that the compu-
tation of all the higher order coefficients is performed over
a segment of five frames [8, 9]. Since the signal has been
recorded under various telephone conditions and with dif-
ferent transducer equipment, each cepstral vector was fur-
ther processed using the two-level cepstral mean subtraction
(2L-CMS) method in order to reduce the effect of channel
distortion [2, 4, 12, 13]. The 2L-CMS technique is imple-
mented in several steps [5]:

e Separate the frames of current utterance into two
classes. If the current frame energy F; < © 4+ v then
the frame ¢ belongs to class-I and © is updated using
a leaky integrator © = § x © 4+ (1 — 3)E;. Otherwise
the frame belongs to class-11 and § is the integration
constant which determines the rate of convergence of
the background energy estimate ©.

e The background and the speech cepstral mean vectors
are calculated for the whole uttereance.

e Finally the normalized cepstral features for each frame
are computed by subtracting them by their respective
cepstral means.

The above procedure is applied in both training and recog-
nition [15]. To illustrate the nature of the signal classifica-
tion, Figure 1 shows the actual frame energy trajectory and
the corresponding speech index as well as the adapted back-



Databases Training Testing
Strings | Speakers | Strings | Speakers

DB1 2568 500 2649 500

DB2 2075 2075 1036 518

DB3 2639 2639 713 713

DB4 - - 3063 200

DB5 - - 4318 50

DB6 - - 1335 1281
Total 7282 5214 13114 3262

Table 1. Regional distributions of spoken digit strings and the
speaker population among the training and testing sets of the
LSS_CD database.

ground energy trajectory for the isolated digit “1” spoken
by a male speaker. It is observed that the 2L-CMS provides
better speech and silence classification and further enhances
the system performance.

4. SPEECH DATABASE

This section describes the database, LSS_CD, used in this
study [15]. This database is a good challenge for speech
recognizers because of its diversity. It is a compilation of
databases collected during several independent data col-
lection efforts, field trials, and live service deployments.
These independent databases are denoted as DB1 through
DB6. The LSS_CD database contains the English digits
one through nine, zero and oh. It ranges in scope from
one where talkers read prepared lists of digit strings to one
where the customers actually use an recognition system to
access information about their credit card accounts. The
data were collected over network channels using a variety
of telephone handsets. Digit string lengths range from 1 to
16 digits. The LSS_CD database is divided into two sets:
training and testing. The training set, DB1 through DB3,
includes both read and spontaneous digit input from a va-
riety of network channels, microphones and dialect regions.
The testing set is designed to have data strings from both
matched and mismatched environmental conditions and in-
cludes all six databases. All recordings in the training and
testing set are valid digit strings, totaling 7282 and 13114
strings for training and testing, respectively. The data dis-
tribution of the training and testing set is shown in Table 1.

5. HMM ARCHITECTURE

Following feature analysis, each feature vector is passed to
the recognizer which models each word in the vocabulary
by a set of left-to-right continuous mixture density HMM
using context-dependent head-body-tail models [8]. Each
word in the vocabulary is divided into a head, a body, and
a tail segment. To model inter-word coarticulation, each
word consists of one body with multiple heads and multiple
tails depending on the preceding and following contexts. In
this paper, we model all possible inter-word coarticulation,
resulting in a total of 276 context-dependent sub-word mod-
els. Both the head and tail models are represented with 3
states, while the body models are represented with 4 states,

Type of Training Scheme
Model ML Training | MSE Training
HMM-I 1.578% 0.986%
HMM-IT | 1.578% 0.927%

Table 2. Word error rate for an unknown-length grammar-
based connected digit recognition task using the ML, conven-
tional and newly proposed MSE trained models.

each having 8 mixture components. Silence is modeled with
a single state model having 32 mixture components. This
configuration results in a total of 276 models, 837 states
and 6720 mixture components. Training included updating
all the parameters of the model, namely, means, variances,
mixture gains and duration statistics using ML estimation
followed by five epochs of MSE to further refine the esti-
mate of the parameters. The number of competing string
models was set to four and the step length was set to one
during the model training phase. The length of the input
digit strings are assumed to be unknown during both train-
ing and testing [15].

6. EXPERIMENTAL RESULTS

We have conducted experiments to verify the effectiveness
of the proposed discriminative training process, using the
continuous speech database, on the convergence property
of the MSE training procedure and on wireline connected
digit recognition performance. In Figure 2 we show empir-
ical results on the behavior of the MSE training procedure
for the city name continuous speech recognition task. The
upper graph of Figure 2 shows the word error rates as a
function of the epoch (a complete pass through the entire
training data set is called an epoch) of the MSE training
algorithm for the testing data. The solid lines are associ-
ated with MSE-trained conventional HMM (HMM-I), and
the dotted lines with HMM generated using the new dis-
criminative training (HMM-II). The lower graph of Figure
2 shows the average string loss for the entire training data
set as a function of the training epoch. We observed that
the recognition error rate monotonically decreases with the
training epoch, and the average string loss monotonically
decreases, both reaching their respective asymptotic values
after five epoches of the training. The average loss decreases
faster for the HMM-II than for the HMM-I, indicating the
effectiveness of the newly introduced updated duration pa-
rameters. Similar characteristics in the recognition perfor-
mance are also observed. This indicates that the original
objective set out for minimizing the recognition error via
the MSE training is accomplished and that the MSE train-
ing may be more effective for the HMM-IT than the HMM-1.

The connected digit speech recognition results focusing on
the comparative performances of the ML and MSE-trained
HMM-II versus the HMM-I are summarized in Table 2. The
results shown in Table 2 can be elaborated as follows. First,
under all conditions the MSE training is superior to the ML
training; the MSE-based recognizer achieves an average of
35% string error rate reduction, uniformly across all types
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Figure 2. Convergence characteristics of the MSE training

procedure. Top graph shows the word error rate for the “con-
nected digit” recognition task and bottom graph shows the
average string loss as a function of the training epoch.

of speech models. Second, for the ML-based recognizer,
the HMM-II gives the same performance as compared with
HMM-I since both the models have the same MLE trained
boot model and duration parameters are updated during
MSE training for HMM-IT and in case of HMM-I the du-
ration parameters remain the same throughout the MSE
training. Thirdly, for the MSE-based recognizer, the HMM-
1T produces 0.92% word error rate which further yields
about 6% reduction in word error rate compared with the
HMM-I. Finally, the results presented in Table 2 demon-
strate the efficacy of extended discriminative training pro-
cedure for connected digit continuous speech recognition.

7. CONCLUSIONS

In this work, the duration parameters have been updated
along with other HMM parameters during discriminative
training procedure. The duration mean and standard devi-
ation parameters are estimated using the new Viterbi seg-
mentation information which are further obtained by using
the current MSE-trained models for each given utterence in
a sequential manner as described in this study. This new ap-
proach is implemented and evaluated using modified MSE
training methods. The convergence property of the train-
ing procedure based on the MSE approach is presented,
which leads us to believe that the objective of minimizing
the string error intended with the MSE criterion is achieved
more effectively for the HMM-II than for the HMM-I. The
experimental results on wireline connected digit recogni-
tion task yields a 6% word error rate reduction by using
the newly trained duration model parameters as compared
to fixed duartion parameters during MSE training. This
suggests that the HMM duration parameters must also be
updated during iterative discriminative training along with
the mean, variance and mixture weight parameters.
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