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ABSTRACT trajectories. The spectrum of the time trajectory is called
modulation spectrum. The typicalegzh nodulation spectrum

One of the great today’s challenges in speech recognition isdgcreases along the modulation frequency axis [4]. Thus, the
ensure the robustness of the used speech representation. Usu@ly, modulation frequencies generally dominate the distance
the recognition rate is strongly reduced when the speech c@mputation in the classifier (similarly, as do the low quefrency
corrupted, e.g. by convolutional or additive noise, and theomponents) but they do not carry the most discriminative
speech features are not designed to be robust. In this paperiffermation [S]. Moreover, when the speech is corrupted by
study the effect of additive noise on the logarithmic filter-bangtationary convolutional noise, th& odulation frequency is
energy representation. We use time and frequency filteririge most affected in the log FBE representation. Thus, filtering
techniques to emphasize the discriminative information and @ the time dimension (Time Filtering — TF) can remove
reduce the mismatch between noisy and clean speeéhdesirable parts of the modulation spectrum.

representation. A 2-D spectral representation is introduced to see . o o

the regions most affected by noise in the 2-D quefrency? [3], both time and frequency filtering were presented jointly,
modulation frequency domain and to help to design thgut considering that there is not interaction between them.
frequency and time filter shapes. Experiments with one and tf#Pwever, we recently observed some facts that led us to
dynamic feature sets show the usefulness of the combinationc@nsider that the interaction exists. Firstly, the noticeable better
time and frequency filtering for both, white and low-pass noisg/€an speech performance of FF with respect to cepstrum that is

speech recognition. At the end the power time and frequenétained when only one static feature set (without TF) is used,
filtering technique is presented. may be reduced to a slight difference if dynamic features are

included in the representation. Second, FF looses its good
1. INTRODUCTION performance for noisy speech when the noise is colored.

In this work, we gain more insight into that interaction problem

t')éleusing the 2-D modulation spectrum representation obtained
from log FBE sequence. We observed, for example, that the
mean value of that 2-D function for noisy speech shows higher
lues at low indices than the corresponding function for clean

Only a part of the information contained in the speech signal
used for speech recognition. Moreover, a speech signal can
distorted by non-speech cponents (e.g. channel or
microphone distortion, additive noise, reverberation...). It i
necessary to extract phonetically important features with gogg

discriminative properties and robustness when used in adver: eech. Thus, TF and FF can improve the recognition rate by
environments prop aFenuating the most distorted regions. Moreover, in the same

way that it can be convenient to use slightly different time filters
i. two different frequency bands [6], the use of different
Ijg&eequency filters in different modulation frequency regions can

sequence of log filter-bank energies (log FBE). In this way, t ) " )
considered speech unit is represented as a two-dimensional 30 Increase the recognition performance for speech distorted
Qé(d additive noise. For designing the filters, we can take

D) time-frequency sequence. This sequence is further proces fthat 2-D | ;

in order to obtain more robust and discriminative features (e.%qlvantage of that 2-D speciral representation.
transformed to mel-cepstrum, RASTA filtered [1]...). Recently s . .
the authors in [2] showed that a simple filtering performed 0For the recognition tests presented in this paper, we used the

- . A fg)llowing conditions: single digits from the adult portion of the
the frequency dimension of every frame (Frequency Fllterlng.rI database, decimated from 20 kHz to 8 kHz sampling rate; no

FF) gives better recognition results for clean speech th}iﬂeemphasis 30 ms long Hamming windowed frames with 10

For recognition purposes, speech is often converted to a t

cepstral coefficients. The FF can be seen as a liftering operat 1 shift: 13-order log FBE basic parameterization scheme;

performeq in the Spec”‘?' domain. _The frequency filters |_n_[ ontinuous density HMMs with 8 states per digit and 3 states for

were deglgned to eq“a"z‘? the variance of cepstral cogfféme%se silence model; for noisy speech, either stationary white

and a simple, database independent, second-order diizer ?ifditive noise or low-pass additive noise with cut-off frequency
€

(here denoted as FF2) was found as a good compromise. _In_ 00 Hz were added to the clean speech to obtain SNR equal to
the FF features appeared more robust than cepstral coeffici

when speech is distorted by additive white noise and a firsf— eceIEha:ndd %gst?r? : VT/{,{?}":}'Q% vvsasegcer:formed always with clean
order filter1-z* (FF1) gave good recognition results. P 9 ysp ’

The components of the epch feature vector vary in time, This work was carried out during the stay of D. Macho at UPC

according to the changes of the speech signal, describing tiFrcelona and sponsored by Spanish government and partially by
Slovak Academy of Sciences.



The 2-D modulation spectrum estimated from clean isolated
2. THE 2-D MODULATION SPECTRUM digits database is shown on Figure 1(a). The decreasing tilt in
both dimensions can be observed. Figure 1(b) shows the 2-D
For better analysis purposes, we spread modulation spectr{igdulation spectrum of epch distorted by additive white
representation [4] in two dimensions, where the modulatioR®'Se: The low indices in quefrency and modulation frequency
spectrum of every cepstral coefficient is present.lagtS(k,n) seem to be the most affected by noise.
be the short-time log FBE estimate of the speech S|gnaII4N|th.|.he mismatch between

denoting the filter-bank output amdthe frame index. The 2-D training and testing log FBE

modulation spectrum (in [7], the modulation spectrogram h representation is the main reason of the poor recognition results
P P 9 tained when the speech corrupted by additive noise is used for

been introduced which displays the evolution of low mOdUIat'oﬂestlng We computed the mismatch between the clean and noisy
frequencies in time and frequency) is then estimated @beech representation as

computing and averaging funct|o|C(m 6] over a speech

2
database. [C(m6)° is obtained by inverse discrete- Fourler|Cn°'Sym9) Cc|ean(m,9)| forallmandd, ©)

transforming from the frequency domainto the quefrencyn . .

and by the Fourier transforming from the time donmaio the and averaging it over many speakers and utterances we
modulation frequency domaiél , estimated the 2-D modul_atlon spectrum of_mlsmatch. Figure 2
shows the 2-D modulation spectra of mismatch foeesh
corrupted by additive white noise (a) and additive low-pass
noise (b), both foSNR=10dB The largest mismatch is situated

FT,

log S(k,n)—"P Ty ¢(m,n)—"2 > C(m,0) il

lcmo)’. (2)
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Figure 1: 2-D modulation spectra of (a) clean and (b) white Figure 2: 2-D modulation spectra of mismatch for (a) additive
noise speech witBNR=10dB white noise and (b) additive low-pass noise, both with

SNR=10dB



in low quefrencies and modulation frequencies with itparametem of the filters in the intervak-0,2; 0,2>, the shape
maximum at the (0,0) point. Note the difference along quefrenof the lifters in low and middle quefrencies changes, while does
between both figures (especially at low modulation frequencies)pt change much in high quefrencies. When the pararaeter
while along modulation frequency they are similar. In botlthanges in the interval0,6; 1,0>, the lifter shape in the high
figures, when the modulation frequency increases, low amgliefrencies changes while in low and middle quefrencies it does
middle quefrencies are less affected and can be used fmt. Since the first and the last filtered log FBE of each frame
recognition. Using FF and TF, we can remove the distorted paxntain absolute energy [2] they can carry much noise, so that
of the 2-D modulation spectrum and even better discriminatiiteey were not used in this feature set.

properties of features can be obtained. If we emphasize two

different regions in the modulation frequency dimension b¥rigure 3 shows the recognition rates for all filters. The clean
using two different time filters, one for each of two feature setspeech recognition rate (Figure 3(a)) increases \atinoreases

we can use a different frequency filter for every region in ordé@nd FF2 gives the best results. However, when the speech is
to weight differently in the quefrency dimension. In thecorrupted by additive white noise (Figure 3(b)), filters that
following sections, the effect of frequency and time filtering orfittenuate low and middle quefrencies are preferable. This is due

the recognition performance is shown. to fact that, although the low and middle quefrencies are useful
for clean speech recognition, they are severally affected by noise
3. RECOGNITION TESTS (8].
3.1 Static Feature Set 3.2 One Time-Filtered Feature Set

i&his case, time filtering is applied to the sequence of features.
S time filters we used the two different Slepian filters (the
ame as those in [4] with parametdfsl, W=12, L=14
enoted as TF1 and=2, W=12, L=14 denoted as TF2) joint
with equalization 1-0,972. TF1 preserves the modulation

wherea changes from-0,2 to 1,0 with step0,1 (note, that the .
filter with a=0 is FF1 anda=1 is FF2). The transform responsegeﬁ:fggeﬁzm speech roughly from 0 Hz to 3 Hz and TF2 from

of the filter is a quefrency function (a lifter). Changing the

If no TF is used, we refer to the speech representation as a st
feature set. In the following, only the effect of the frequenc
filtering is presented. For this purpose, we used 13 differe
frequency filters of length 3 with system functi¢n1)(z+a)

100 The first test we performed was without frequency filtering.
From the first two lines of Table 1 it seems that the features
% . from the TF1 r_e_gion yield more discriminative information
98 ——— (97,71% recognition rate for clean speech) than those from the
_ o7 Ea TF2 region (95,13%). However, when noisy speech is
5% — recognized, the TF2 features give better results and are more
g ‘,/'//4/ robust than the features from the TF1 region.
§= o4 - Technique [ Clean [ SNR=20dB | SNR=10dB
¢ 93 | —e— static clean White noise
o —m—TFLckan | | TF1, no FF 97,71 50,70 16,10
—&— TFR2 clean TF2, no FF 95,13 64,10 41,01
o TF1, FF113/12 97,79 94,37 82,98
El) ‘ ‘ ‘ — ‘ TF1, FF2 13/12 99,16 95,90 81,17
-02 -01 00 01 02 03 04 05 06 07 08 09 10 TFZ’ FF1 13/12 97‘26 92’84 77‘02
Frequency Filter ->a TF2, FF2 13/12 98,39 95,13 79,60
(@ Low-pass noise
80 TF1, FF113/12 97,79 90,38 78,11
TF1, FF2 13/12 99,16 90,30 77,14
—a— ) ] ) ]
7 - T TF2, FF1 13/12 97,26 92,23 77,99
70 — TF2, FF2 13/12 98,39 93,32 78,63
%65 Table 1: Recognition rates in % using TF1, TF2 without
g ~ N .
€ o frequency filtering and with FF1 and FF2
2 A\ —e— static 10dB [
g 55
3 AN —E-TRL1008 ) The situation changes when FF is used in conjunction with TF.
50 | \‘\ A TR0 Figure 3 shows the behavior of both, TF1 and TF2 feature sets
i in terms of different FFs. For clean speech, the TF1 features
\\ give better results for every FF than the TF2 features (see Figure
40 3(a)). In the noisy case, the frequency filtering partially reduces

-02 -01 00 01 02 03 04 05 06 07 08 09 10
Frequency Filter ->a

the high content of noise in TF1 region and the recognition rates
even outperform the TF2 results (Figure 3(b)). Moreover, a

(b) different behavior of the feature sets from two mentioned
Figure 3: Recognition rate in terms of the FF and TF used Modulation frequency regions can be observed. For the TF1
in the parameterization for (a) clean and (b) white noise "€9ion, the frequency filters which attenuate more the low and
speech wittSNR=10dB



middle quefrencies (those with=<-0,2; 0,2>) give slightly
better results than the others for noisy speech. Attenuating

general, the power operation can be expresseb@S(k,n)’ .

high quefrencies in this region seems to improve the recognitidible 3 shows the results from the same experiments as Table 2
too (filters with a=<0,6; 1,0>). For the TF2 region, an but using square-power frequency and time filtering=( ) fdz
increasing tendency in the recognition rate can be observetb feature sets. A clear improvement for noisy speech can be

when the coefficiend increases and FF2 is the optimal filter.

obtained while the recognition rates for clean speech do not

decrease.

We tried to include the first and the last filtered log FBE to the

feature vector. Only including of the first one improved the

noisy speech recognition. In general, the first log FBE containg

more speech energy and is not affected by additive noise s
much as the last one, which contains less speech energy. Tabl

shows the recognition rates with the first log FBE included in

the feature vector.

In the additive low-pass noise case, the results from experimen

when only FF is used are very low (near 17% for FF1 or FF2
and SNR=10dB. This is due to fact, that the filtered log FBEs

Technique [Clean | SNR=20dB] SNR=10dB
White noise
OFF1 13/12, TFL &
\ AFL 13/12, TF2 98,43 97,22 91,51
FF2 13/12, TF1 &
FF2 13/12, TF2 99,28 98,03 90,95
FF113/12, TF1 &
FF213/12, TF2 99,16 97,63 92,31
i Low-pass noise
FF113/12, TF1 &
FF2 13/12, TF2 99,16 96,62 89,66

include the step of the transition band of the noise spectrunt.
Since the step effect is constant in the time, it can be almodBable 3: Recognition rates in % for two feature sets using square-
canceled by the time filter. Results with different time angower frequency and time filtering

frequency filters are in the Table 1.
4. CONCLUSIONS

So far, time and frequency filtering have been studied
The recognition rate can be improved using features from bogeparately. In this paper, we offer an introduction to their joint
time-filtered regions in two different feature sets. We havimvestigation. We showed TF-FF features are robust against
found the static feature set is a source of errors when ussdtionary, additive white and low-pass noises for isolated digit
together with time-filtered features and we do not use it. In thecognition. A great advantage of this technique is that it does
Table 2, the recognition tests are presented for thremt decrease clean speech recognition results. In the further
combinations of time and frequency filters. For clean speech, th@rk, a 2-D filter can be designed, which will include different
best recognition result is obtained when FF2 filter is used fgF in different TF regions in one feature set. Moreover, the
both time-filtered feature sets. When FF1 is used, thsower coefficient can be optimized. Also, we want to extend the
recognition for clean speech decreases, but increases for naisgntioned techniques to more difficult tasks.
speech. From Figure 3(b) it can be observed (here the feature
sets were used separately), that for the TF1 feature set the 5. REFERENCES
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In this technique we assumed, that in the log FBE representation
of noisy speech the high-energy coefficients are less affected &y
noise than the coefficients with low energy content. Thus, we
use simple power operation on the log FBEs before they enter to
the FF in order to emphasize the high-energy coefficients. In



