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windows, which result from Karhunen-Loeve (KL)
ABSTRACT eigenequations. Some of their results have been discussed in [4],
- o where it is experimentally shown that when not only both
Many speech recognition systems use logarithmic filter-bank  yariance and frequency resolution of the estimator are
energies or a linear transformation of them to represent the  ¢onsidered but also time resolution is taken into account (note
speech signdl. Usudly, each of those energies is routinely  that the time resolution is actually involved in speech
computed as a weighted average of the periodogram samples  processing), the statistical performance of the FAP and that of
that lie in the corresponding frequency band. In this work, we  the estimator arising from the MW-KL formalism are almost
altempt to gain an insight into the statistica properties of the jgentical. For that reason, as well for the fact that the
frequency-averaged periodogram (FAP) from which those  jmplementation of the FAP only requires the computation of
energies are samples. Thus, we have shown that the FAP IS one periodogram, and, furthermore, because it offers a great
statistically and asymptotically equivalent to a multiwindow  fiexibility in defining the bands and the shape of the weights,
estimator that arises from the Thomson’s optimization approaghe FAP appears as a quite practical choice for extracting the
and uses orthogonal sinusoids as windows. The FAP and otlgpctral parameters to be used in speech recognition.
multiwindow estimators are tested in aesph recognition
application, observing the influence of several design factort this paper, an attempt is firsty made to theoretically
Particularly, a technique that is computationally simple like thivestigate the statistical properties of the FAP. Unfortunately,
FAP’s one, and which is equivalent to use multiple cosinthe FAP does not match the optimal MW-KL formalism.
windows, appears as an alternative to be taken inftherefore, we have studied the mathematical properties of the
consideration. FAP by relating it with spectral estimators arising from that
approach. From that, new MW alternatives for speech
1. INTRODUCTION parameterization appeared. They were tested in a speech

recognition application, observing the influence of several
To find a set of Q parameters that reliably represent the spectgakign factors.

envelope of a given speech frame, the widely used filter-bank-
based speech parameterization techniques (e.g. mel-cepstrum 2 MULTIWINDOW SPECTRAL
[1]) usually estimate the filter-bank energies (FBE) through a ESTIMATION AND THE COMPOSITE

weighted averaging of the periodogram samples (i.e. the
samples of the square magnitude of the DFT of the windowed SPECTRAL WINDOW
speech signal) that lie in each of Q frequency bands. The§ﬁ1ce Thomson's work

- . . [3], several recent spectral analysis
ba_nds can be dls_trlbuted alon_g the frequency axis e'thﬁ]rethods are based on the multiple window (MW) approach.
uniformly or according to a non-linear frequency scale such

the mel scale Biven a signal x(n) bc_etween n=0 ar_1d n=N-1, th_ey estimate the
’ power spectral density by averaging the periodograms that

If the set of weights used to compute the FBE is the same f@sult fromK orthonormal windows or taperg), Osk<K-1.

each band, those band energies can be seen as sangpies (O<n<N-1, which are optimal in a given way.

linear sampling if a mel scale is used) of a spectral estimate thl%te set of Slepian windows or discrete prolate spheroidal

results from convolving the periodogram with the WEightin%equences used in the Thomson’s method can be described as

function. In the following, we will refer to that spectral estimatearising from the Karhunen-Loéve eigenequation that, written in

as the Frequency-Averaged Periodogram (FAP) (it actually {Re frequency domain, is [3] '

the so-called Daniell’s periodogram [2]).

The FAP can be viewed as belonging to the family of ifﬂQ(e)KN (w-08),(6)de =, v, (@)
multiwindow (MW) spectral estimators, i.e. those that result ar

1)
from averaging several periodograms, each one computed with . . .
. . . . <K-
a different window. Since Thomson's introductory work [3]Where k=K l’V.k(w) IS the Fourier transform o), A IS
. . - . e corresponding eigenvalue, andy(K) is the Fourier
various researchers have claimed good statistical properties for

the MW estimates that are computed with a set of orthogontert?nsmrm of a rectangular window ranging from 0 to N-1.



The Slepian windows are obtained from the Karhunen-Loéve 3 FREQUENCY AVERAGING AND
eigenequation when the kernel«(©f (1) is SINUSOIDAL WINDOWS

Q(w): %L —Wsw<w The FAP technique computes a weighted average of K

oY |w| >W ) periodogram samples within a given band around the current
frequency. As shown in the Mullis-Scharf's tutorial of quadratic

Approximately, the choice K=2NW allows to consider only theestimators [5], it can be viewed as a MW technique, where the

windows that have most of their energy inside the band [3K windows result from multiplying a base rectangular window

Using shapes for @) others than the rectangular one, differenby complex exponentials that produce frequency shifts of its

families of windows follow from the integral equations (1).Fourier transform.

-(BT(?))SeaZrth%rilgor:Ta':'r\:\g?dc?rmsog;iglli?; ?Srttjs()e%?:lfle;v'ti: rgfg:rdtgome insight into_ the properties of t_he FAP can be obtained
reduce the variance since orthogonal windows lead oM the MW estlmators thqt use sinusoidal wnndows.. They
uncorrelated periodograms. arise frqm the KL elggnequatlons. wherud(s a pole function

[6]. Particularly, as Riedel and Sidorenko have shown [7], the
In this paper, we are going to consider two non-rectangular teet of sine-wave windows has interesting properties since: 1) it
kernels: a triangular function and a function that is the squai® very close to the set of minimum bias windows, and 2) the
magnitude of the frequency response (spectral response) ot@mputation of the spectral estimate can be implemented in a
single-pole discrete system; to be concise, we will refer to tisgraightforward way since, given a frequengythe estimator is
latter as the pole function K

Every MW estimator computes an estima@¢w) of S(w) by a _ 2 2

averaging in some way the power within a band surrounding the S5 (@)= ,ZO a|X(@- ) - X(@+ )| @
current frequency w. Each window contributes to this average

favoring some subbands in front of the others. If we wish to  where X(w) is the Fourier transform of x(n).

control that contribution, we have to assign different weights ay

to each windowed periodogram, .. FAP uses complex exponential windows instead of sinusoids,

which is equivalent to say that it applies expression (4) without
2 the cross-term that is included in it. Figure 1 schematically

S(w) = Kzlak Azlvk (n)x(n)e /" shows the operations which define the FAP (average of the
k=0 [n=0 A3) square magnitudes at each side of the central frequency), the
x-1 sine case (square magnitude of the difference) and the cosine
so that z a, =1. case (square magnitude of the addition).
k=0

In order to have a measure of the combined effect of the set of
windows on the frequency domain, a composite spectral
window (CSW) can be defined as [4]

1 2
w = a |V,
(w) kzo k| k (a))| )

The CSW is a meaningful function for every MW estimator. In

fact, asit is experimentally shown in [4], when the CSW of two

MW techniques have a similar shape, the statistic performance

of both estimators in terms of bias and variance is amost

identical. Figure 1. Operations involved in, from left to right: the FAP,
the sine case and the cosine case.

The weights a are arbitrary but if we choose them as
normalized eigenvalues, i.e. Actually, the FAP estimate results from averaging the two MW
estimates with sine and cosine windows. Therefore, it can be

ap = A shown [6] that, asymptotically, i.e. when N tends to infinite,
KZ_lA , (6) both the mean and the variance of the FAP estimator coincide
= / with those of the MW estimators with sine and cosine.

Moreover, the N exponential windows which are implicitly
it results that the functions Q(w) and W(w) of any given MW  considered by the FAP technique are also orthogona. In
estimator show a similar shape. Specificaly, it can beshown [7]  conclusion, we can say that, although the FAP does not result
that from the KL optimization framework, it is close to optimal

2ir estimators at least in a statistical and asymptotic sense.
(@) 0G0 - —————0) @
J’_”Q(w)dw



The role of the CSW W(w) of (5) is quite relevant for the
properties of the MW spectral estimator [4] and it is determined
by the weights & in (3). For estimators arising from the MW-
KL formalism others than the sinusoidal ones, we will choose
the weights according to (6), so the CSW will aimost determine
the identity of the windows set through its close relationship
with the kernel Q(w) (see expression (7)). Following the work
by Hansson et a.[8], we aso found in [4] that if we know a
priori that the spectrum has prominent peaks, it will be useful in
terms of bias and variance to employ a non-rectangular CSW. In
fact, speech spectra show that kind of pesks so in speech
processing it will be convenient to employ peaky shapes for
W(w), like the triangular shape that is conventionally used for
computing the FBEsS in speech recognition. Interestingly
enough, we have observed [6] that the windows which arise
from the MW-KL approach with a triangular Q(w) have almost
sinusoidal shapes.

4. APPLICATION TO SPEECH
PARAMETERIZATION

Many speech recognition systems use logarithmic filter-bank
energies or alinear transformation of them (e.g. mel-cepstrum)
to represent the speech signal. Usually, each of those energiesis
routinely computed as a weighted average of the periodogram
samples that lie in the corresponding frequency band so they
can be seen as samples of the FAP. In the above sections we
have shown the close relationship between FAP and estimators
coming from an optimal MW approach. Therefore, it is not
surprising that FAP is the most widely used spectral analysis
technique for estimating the speech spectral envelope.

Anyway, our investigation has risen aternatives to FAP that
will be tested in the next section. The most attractive ones are
the MW estimators based on sinusoidal windows since they
only require one DFT like FAP.

Several shapes will be considered for W(w): rectangular,
triangular and pole function. The last one may be the most
appropriate if the aim of spectral estimation is to accentuate the
spectral peaks since, according to the speech production model,
formants have a shape like that of the pole function. Hence, it
may be a good choice for formant estimation. However, we can
not assert that enhancing spectral peaks is convenient for speech
recognition, since they are not the formant frequencies that are
used as spectral parameters but the samples of the spectra
estimate at the centers of the various frequency bands. In fact, as
we will see in the next section, the best results are not obtained
with the pole function but with the triangular one.

In fact, a problem we face in speech recognition trying to
improve just the spectral estimator in terms of statistical
performance is that the posterior fixed sampling of the estimate
does not take into account the actual spectrum of the current

frame. Thus, an improvement in terms of —for instance—

5. SPEECH RECOGNITION RESULTS

We carried out several recognition tests with a telephone speech
database of single Catalan digits. 2275 digit utterances were
used for training and 2000 for testing. There was not any

selection of files according to SNR, type of noise, dialect or

speaker.

A speech recognition system based on continuous observation
density hidden Markov models was used in the experiments
(HTK 2.1). Each of the 11 digit models consisted of 8 (emitting)
states, and the silence model had 3 states. For computational
simplicity, only one diagonal covariance Gaussian pdf was
employed per state.

Assuming as usual that, in a short-term basis, a stationary
process can model the speech signal, a frame-to-frame spectral
analysis yields a temporal sequence of spectral estimates that
represent the acoustic-perceptual content. First of all, the 8 kHz
sampled speech signal was Hammingdewed. Each frame
was 32 ms long (256 samples) and the frame shift was 10 ms.
After computing the spectral parameters for each frame of a
given utterance, the average value of each time sequence of
spectral parameters was removed from it (spectral mean
removal). The delta parameters and the delta energy were also
computed and included in all the tests.

Speech recognition tests were carried out for the various
techniques presented in the paper, using the three different
above mentioned CSW (rectangular, triangular and pole
function), using either the uniform or the medale for the
distribution of the bands between 100 Hz and 4000 Hz, and
using two values for the number of bands Q: 12 and 24. Note
that in the perceptively important frequency range between 100
and 1000 Hz, the uniform scale with 24 bands and the mel scale
with 12 bands show a very close distribution of bands along the
frequency axis.

In order to separate the effect of the spectral estimator from the
subsequent linear transformation that is applied to the set of
band energies, we carried out tests for two cases:

1) using just the filter-bank energies (FBE), without any
posterior transformation;

2) applying to the FBE a frequency filtering operation (FBE-
FF) with the usual filter 1-3{9].

First of all, speech recognition results for three spectral
estimation techniques that use only one DFT will be presented.
They correspond to the sets of exponential (FAP), sine (SIN)
and cosine (COS) windows. The CSW are denoted with the
capital letters R (rectangular), T (triangular), and P (pole
function). UNIF and MEL refer to, respectively, the uniform
and the mel frequency scales. The two numbers of bands for the
uniform scale will be denoted by UNIF-12 and UNIF-24.

frequency resolution must not necessarily mean a bett&tcording to the results shown in Table 1, for the FBE case,

recognition performance.

both SIN and COS techniques outperform FAP’s one always,
i.e. for every frequency scale and every CSW; however, when
FF is used (Table 2), the difference is reduced. COS achieves
the highest rates for both cases.



12 bands 24 bands

FBE UNIF MEL UNIF
R 84.74 86.89 83.89

FAP T | 8344 | 8454 | 8369

R | 8584 | 8829 | 8609

SIN T | 8534 | 8874 | 8424
P 83.84 86.74 83.09

R | 8520 | 8949 | 8544

cos T | 8564 | 8919 | 8509
P 82.34 87.94 83.99

Table 1: Recognition rates for FAP, SIN and COS without FF.

12 bands 24 bands

FBE-FF UNIF MEL UNIF
R 94.05 95.10 94.75

FAP T | 9405 | 9610 | 9620
R | 910 | 9500 | 9520

SIN T | 9465 | 9555 | 9625
P 93.90 95.25 96.40

R | 9445 | 9495 | 9560

Ccos T 94.05 96.70 96.90
P | 9340 | 9535 | 9670

Table 2: Recognition rates for FAP, SIN and COS with FF.

Regarding the type of CSW, for FBE using any frequency scale
and for FBE-FF using UNIF-12, R works, in general, equa or
better than T, and T better than P. But for FBE-FF using either
UNIF-24 or MEL, T and P perform always better than R. Note
that the best results are obtained with the triangular window, the
onethat is conventionally used in speech recognition.

MEL performs much better than UNIF-24 bands for FBE, and
FF reverses again the situation, since, in general, UNIF-24 gets
dlightly higher rates than MEL for FBE-FF. However, it
requires double number of parameters.

Table 3 presents a few meaningful recognition tests carried out
for the FBE-FF case, using MW techniques that can not avoid
the use of severa DFT computations and whose sets of
windows arise from the KL formulation of Section 2 by
choosing Q(w)=W(w). Only the uniform scale was employed
since a non-uniform scale would require a different set of
windows for each band. The number of windows taken is
K=2NW for the rectangular CSW (as pointed out in Section 2),
and K=4NW for the triangular one.

UNIF
FBE-FF 12 bands | 24 bands
R 94.40 94.55
MWL | ¢ [Te385 [ 9620

Table 3: Recognition rates for the MW-KL estimator using FF.

Comparing results from Table 3 with those from Table 2, we
see there is not much difference between FAP and MW-KL
estimators that theoretically share the same CSW, but the results
are not coincident. In fact, the actual shapes of their CSW are

not exactly the same because they are fixed by different
procedures. They are more similar for the triangular case, the
one for which the recognition rates from both estimators are
closer.

In conclusion, in our (preliminary) recognition experiments, the
highest rates for all the techniques, using 12 spectral parameters
per frame, were obtained with the mel scale and the triangular
window. Notice that both are aready employed in the
conventional filter-bank speech parameterization. The MW-KL
estimator performs similarly to FAP, confirming the decisive
role of the CSW observed in [4]. COS obtains the highest scores
so that it might be an alternative to FAP, but more experiments
must be carried out to test it in diverse situations.

6. CONCLUSIONS

In this paper, an attempt has been made to theoretically
investigate the statistical properties of the FAP and we have
shown that, asymptotically and in terms of the first and the
second moments of the estimator, the FAP is equivaent to the
MW-KL estimator that uses orthogonal sinusoids as windows.
This fact suggested us that the MW-KL spectral estimator that is
based on sinusoidal windows could aso be used for speech
recognition. Actually, it does not require more computations
that the FAP since it can aso be obtained from only one DFT,
and it also performs a kind of frequency averaging, but using
additional cross products of periodogram samples. Speech
recognition tests were carried out for these and the other MW
techniques considered in the paper. The results show that the
cosine technique appears as an aternative to be taken into
consideration.
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