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ABSTRACT

Many speech recognition systems use logarithmic filter-bank
energies or a linear transformation of them to represent the
speech signal. Usually, each of those energies is routinely
computed as a weighted average of the periodogram samples
that lie in the corresponding frequency band. In this work, we
attempt to gain an insight into the statistical properties of the
frequency-averaged periodogram (FAP) from which those
energies are samples. Thus, we have shown that the FAP is
statistically and asymptotically equivalent to a multiwindow
estimator that arises from the Thomson’s optimization approach
and uses orthogonal sinusoids as windows. The FAP and other
multiwindow estimators are tested in a speech recognition
application, observing the influence of several design factors.
Particularly, a technique that is computationally simple like the
FAP’s one, and which is equivalent to use multiple cosine
windows, appears as an alternative to be taken into
consideration.

1. INTRODUCTION

To find a set of Q parameters that reliably represent the spectral
envelope of a given speech frame, the widely used filter-bank-
based speech parameterization techniques (e.g. mel-cepstrum
[1]) usually estimate the filter-bank energies (FBE) through a
weighted averaging of the periodogram samples (i.e. the
samples of the square magnitude of the DFT of the windowed
speech signal) that lie in each of Q frequency bands. These
bands can be distributed along the frequency axis either
uniformly or according to a non-linear frequency scale such as
the mel scale.

If the set of weights used to compute the FBE is the same for
each band, those band energies can be seen as samples (non-
linear sampling if a mel scale is used) of a spectral estimate that
results from convolving the periodogram with the weighting
function. In the following, we will refer to that spectral estimate
as the Frequency-Averaged Periodogram (FAP) (it actually is
the so-called Daniell’s periodogram [2]).

 The FAP can be viewed as belonging to the family of
multiwindow (MW) spectral estimators, i.e. those that result
from averaging several periodograms, each one computed with
a different window. Since Thomson's introductory work [3],
various researchers have claimed good statistical properties for
the MW estimates that are computed with a set of orthogonal

windows, which result from Karhunen-Loève (KL)
eigenequations. Some of their results have been discussed in [4],
where it is experimentally shown that when not only both
variance and frequency resolution of the estimator are
considered but also time resolution is taken into account (note
that the time resolution is actually involved in speech
processing), the statistical performance of the FAP and that of
the estimator arising from the MW-KL formalism are almost
identical. For that reason, as well for the fact that the
implementation of the FAP only requires the computation of
one periodogram, and, furthermore, because it offers a great
flexibility in defining the bands and the shape of the weights,
the FAP appears as a quite practical choice for extracting the
spectral parameters to be used in speech recognition.

In this paper, an attempt is firstly made to theoretically
investigate the statistical properties of the FAP. Unfortunately,
the FAP does not match the optimal MW-KL formalism.
Therefore, we have studied the mathematical properties of the
FAP by relating it with spectral estimators arising from that
approach. From that, new MW alternatives for speech
parameterization appeared. They were tested in a speech
recognition application, observing the influence of several
design factors.

2. MULTIWINDOW SPECTRAL
ESTIMATION AND THE COMPOSITE

SPECTRAL WINDOW

Since Thomson’s work [3], several recent spectral analysis
methods are based on the multiple window (MW) approach.
Given a signal x(n) between n=0 and n=N-1, they estimate the
power spectral density by averaging the periodograms that
result from . orthonormal windows or tapers vk(n), 0�N�.���
0�Q�1����ZKLFK�DUH�RSWLPDO�LQ�D�JLYHQ�ZD\�

The set of Slepian windows or discrete prolate spheroidal
sequences used in the Thomson’s method can be described as
arising from the Karhunen-Loève eigenequation that, written in
the frequency domain, is [3]
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where 0�N�.���9k(ω) is the Fourier transform of vk(n),  λk  is
the corresponding eigenvalue, and KN(ω) is the Fourier
transform of a rectangular window ranging from 0 to N-1.



The Slepian windows are obtained from the Karhunen-Loève
eigenequation when the kernel Q(ω) of (1) is
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Approximately, the choice K=2NW allows to consider only the
windows that have most of their energy inside the band [3].
Using shapes for Q(ω) others than the rectangular one, different
families of windows follow from the integral equations (1).
Those orthonormal windows are also orthogonal with respect to
Q(ω) as weight. That orthogonality is searched in order to
reduce the variance since orthogonal windows lead to
uncorrelated periodograms.

In this paper, we are going to consider two non-rectangular the
kernels: a triangular function and a function that is the square
magnitude of the frequency response (spectral response) of a
single-pole discrete system; to be concise, we will refer to the
latter as the pole function

Every MW estimator computes an estimate Ŝ (ω) of S(ω) by
averaging in some way the power within a band surrounding the
current frequency ω. Each window contributes to this average
favoring some subbands in front of the others. If we wish to
control that contribution, we have to assign different weights ak
to each windowed periodogram, i.e.
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In order to have a measure of the combined effect of the set of
windows on the frequency domain, a FRPSRVLWH� VSHFWUDO
ZLQGRZ�(CSW) can be defined as [4]
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The CSW is a meaningful function for every MW estimator. In
fact, as it is experimentally shown in [4], when the CSW of two
MW techniques have a similar shape, the statistic performance
of both estimators in terms of bias and variance is almost
identical.

The weights ak are arbitrary but if we choose them as
normalized eigenvalues, i.e.
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it results that the functions Q(ω) and W(ω) of any given MW
estimator show a similar shape. Specifically, it can be shown [7]
that
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3. FREQUENCY AVERAGING AND
SINUSOIDAL WINDOWS

The FAP technique computes a weighted average of K
periodogram samples within a given band around the current
frequency. As shown in the Mullis-Scharf’s tutorial of quadratic
estimators [5], it can be viewed as a MW technique, where the
K windows result from multiplying a base rectangular window
by complex exponentials that produce frequency shifts of its
Fourier transform.

Some insight into the properties of the FAP can be obtained
from the MW estimators that use sinusoidal windows. They
arise from the KL eigenequations when Q(ω) is a pole function
[6]. Particularly, as Riedel and Sidorenko have shown [7], the
set of sine-wave windows has interesting properties since: 1) it
is very close to the set of minimum bias windows, and 2) the
computation of the spectral estimate can be implemented in a
straightforward way since, given a frequency ω, the estimator is
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where X(ω) is the Fourier transform of x(n).

FAP uses complex exponential windows instead of sinusoids,
which is equivalent to say that it applies expression (4) without
the cross-term that is included in it. Figure 1 schematically
shows the operations which define the FAP (average of the
square magnitudes at each side of the central frequency), the
sine case (square magnitude of the difference) and the cosine
case (square magnitude of the addition).

 )LJXUH��. Operations involved in, from left to right: the FAP,
the sine case and the cosine case.

Actually, the FAP estimate results from averaging the two MW
estimates with sine and cosine windows. Therefore, it can be
shown [6] that, asymptotically, i.e. when N tends to infinite,
both the mean and the variance of the FAP estimator coincide
with those of the MW estimators with sine and cosine.
Moreover, the N exponential windows which are implicitly
considered by the FAP technique are also orthogonal. In
conclusion, we can say that, although the FAP does not result
from the KL optimization framework, it is close to optimal
estimators at least in a statistical and asymptotic sense.



The role of the CSW W(ω)  of (5) is quite relevant for the
properties of the MW spectral estimator [4] and it is determined
by the weights ak in (3). For estimators arising from the MW-
KL formalism others than the sinusoidal ones, we will choose
the weights according to (6), so the CSW will almost determine
the identity of the windows set through its close relationship
with the kernel Q(ω) (see expression (7)). Following the work
by Hansson et al.[8], we also found in [4] that if we know a
priori that the spectrum has prominent peaks, it will be useful in
terms of bias and variance to employ a non-rectangular CSW. In
fact, speech spectra show that kind of peaks so in speech
processing it will be convenient to employ peaky shapes for
W(ω), like the triangular shape that is conventionally used for
computing the FBEs in speech recognition. Interestingly
enough, we have observed [6] that the windows which arise
from the MW-KL approach with a triangular Q(ω) have almost
sinusoidal shapes.

4. APPLICATION TO SPEECH
PARAMETERIZATION

Many speech recognition systems use logarithmic filter-bank
energies or a linear transformation of them (e.g. mel-cepstrum)
to represent the speech signal. Usually, each of those energies is
routinely computed as a weighted average of the periodogram
samples that lie in the corresponding frequency band so they
can be seen as samples of the FAP. In the above sections we
have shown the close relationship between FAP and estimators
coming from an optimal MW approach. Therefore, it is not
surprising that FAP is the most widely used spectral analysis
technique for estimating the speech spectral envelope.

Anyway, our investigation has risen alternatives to FAP that
will be tested in the next section. The most attractive ones are
the MW estimators based on sinusoidal windows since they
only require one DFT like FAP.

Several shapes will be considered for W(ω): rectangular,
triangular and pole function. The last one may be the most
appropriate if the aim of spectral estimation is to accentuate the
spectral peaks since, according to the speech production model,
formants have a shape like that of the pole function. Hence, it
may be a good choice for formant estimation. However, we can
not assert that enhancing spectral peaks is convenient for speech
recognition, since they are not the formant frequencies that are
used as spectral parameters but the samples of the spectral
estimate at the centers of the various frequency bands. In fact, as
we will see in the next section, the best results are not obtained
with the pole function but with the triangular one.

In fact, a problem we face in speech recognition trying to
improve just the spectral estimator in terms of statistical
performance is that the posterior fixed sampling of the estimate
does not take into account the actual spectrum of the current
frame. Thus, an improvement in terms of –for instance–
frequency resolution must not necessarily mean a better
recognition performance.

5. SPEECH RECOGNITION RESULTS

We carried out several recognition tests with a telephone speech
database of single Catalan digits. 2275 digit utterances were
used for training and 2000 for testing. There was not any
selection of files according to SNR, type of noise, dialect or
speaker.

A speech recognition system based on continuous observation
density hidden Markov models was used in the experiments
(HTK 2.1). Each of the 11 digit models consisted of 8 (emitting)
states, and the silence model had 3 states. For computational
simplicity, only one diagonal covariance Gaussian pdf was
employed per state.

Assuming as usual that, in a short-term basis, a stationary
process can model the speech signal, a frame-to-frame spectral
analysis yields a temporal sequence of spectral estimates that
represent the acoustic-perceptual content. First of all, the 8 kHz
sampled speech signal was Hamming windowed. Each frame
was 32 ms long (256 samples) and the frame shift was 10 ms.
After computing the spectral parameters for each frame of a
given utterance, the average value of each time sequence of
spectral parameters was removed from it (spectral mean
removal). The delta parameters and the delta energy were also
computed and included in all the tests.

Speech recognition tests were carried out for the various
techniques presented in the paper, using the three different
above mentioned CSW (rectangular, triangular and pole
function), using either the uniform or the mel� scale for the
distribution of the bands between 100 Hz and 4000 Hz, and
using two values for the number of bands Q: 12 and 24. Note
that in the perceptively important frequency range between 100
and 1000 Hz, the uniform scale with 24 bands and the mel scale
with 12 bands show a very close distribution of bands along the
frequency axis.

In order to separate the effect of the spectral estimator from the
subsequent linear transformation that is applied to the set of
band energies, we carried out tests for two cases:

1) using just the filter-bank energies (FBE), without any
posterior transformation;

2) applying to the FBE a frequency filtering operation (FBE-
FF) with the usual filter 1-z-1[9].

First of all, speech recognition results for three spectral
estimation techniques that use only one DFT will be presented.
They correspond to the sets of exponential (FAP), sine (SIN)
and cosine (COS) windows. The CSW are denoted with the
capital letters R (rectangular), T (triangular), and P (pole
function). UNIF and MEL refer to, respectively, the uniform
and the mel frequency scales. The two numbers of bands for the
uniform scale will be denoted by UNIF-12 and UNIF-24.

According to the results shown in Table 1, for the FBE case,
both SIN and COS techniques outperform FAP’s one always,
i.e. for every frequency scale and every CSW; however, when
FF is used (Table 2), the difference is reduced. COS achieves
the highest rates for both cases.
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5 84.74 86.89 83.89
)$3

7 83.44 84.54 83.69
5 85.84 88.29 86.09
7 85.34 88.74 84.246,1
3 83.84 86.74 83.09
5 85.29 89.49 85.44
7 85.64 89.19 85.09&26
3 82.34 87.94 83.99

7DEOH����Recognition rates for FAP, SIN and COS without FF.
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5 94.05 95.10 94.75
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7 94.05 96.10 96.20
5 95.10 95.00 95.20
7 94.65 95.55 96.256,1
3 93.90 95.25 96.40
5 94.45 94.95 95.60
7 94.05 96.70 96.90&26
3 93.40 95.35 96.70

7DEOH����Recognition rates for FAP, SIN and COS with FF.

Regarding the type of CSW, for FBE using any frequency scale
and for FBE-FF using UNIF-12, R works, in general, equal or
better than T, and T better than P. But for FBE-FF using either
UNIF-24 or MEL, T and P perform always better than R. Note
that the best results are obtained with the triangular window, the
one that is conventionally used in speech recognition.

MEL performs much better than UNIF-24 bands for FBE, and
FF reverses again the situation, since, in general, UNIF-24 gets
slightly higher rates than MEL for FBE-FF. However, it
requires double number of parameters.

Table 3 presents a few meaningful recognition tests carried out
for the FBE-FF case, using MW techniques that can not avoid
the use of several DFT computations and whose sets of
windows arise from the KL formulation of Section 2 by
choosing Q(ω)=W(ω). Only the uniform scale was employed
since a non-uniform scale would require a different set of
windows for each band. The number of windows taken is
K=2NW for the rectangular CSW (as pointed out in Section 2),
and K=4NW for the triangular one.
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5 94.40 94.55
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7 93.85 96.20

7DEOH����Recognition rates for the MW-KL estimator using FF.

Comparing results from Table 3 with those from Table 2, we
see there is not much difference between FAP and MW-KL
estimators that theoretically share the same CSW, but the results
are not coincident. In fact, the actual shapes of their CSW are

not exactly the same because they are fixed by different
procedures. They are more similar for the triangular case, the
one for which the recognition rates from both estimators are
closer.

In conclusion, in our (preliminary) recognition experiments, the
highest rates for all the techniques, using 12 spectral parameters
per frame, were obtained with the mel scale and the triangular
window. Notice that both are already employed in the
conventional filter-bank speech parameterization. The MW-KL
estimator performs similarly to FAP, confirming the decisive
role of the CSW observed in [4]. COS obtains the highest scores
so that it might be an alternative to FAP, but more experiments
must be carried out to test it in diverse situations.

6. CONCLUSIONS

In this paper, an attempt has been made to theoretically
investigate the statistical properties of the FAP and we have
shown that, asymptotically and in terms of the first and the
second moments of the estimator, the FAP is equivalent to the
MW-KL estimator that uses orthogonal sinusoids as windows.
This fact suggested us that the MW-KL spectral estimator that is
based on sinusoidal windows could also be used for speech
recognition. Actually, it does not require more computations
that the FAP since it can also be obtained from only one DFT,
and it also performs a kind of frequency averaging, but using
additional cross products of periodogram samples. Speech
recognition tests were carried out for these and the other MW
techniques considered in the paper. The results show that the
cosine technique appears as an alternative to be taken into
consideration.
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