FAST COMPUTATION OF MAXIMUM ENTROPY / MINIMUM DIVERGENCE
FEATURE GAIN

Harry Printz
IBM Watson Research Center
Yorktown Heights, NY 10598 USA

printz@watson.ibm.com

ABSTRACT

Maximum entropy / minimum divergence modeling is a
powerful technique for constructing probability models,
which has been applied to a wide variety of problems in
natural language processing. A maximum entropy / mini-
mum divergence (MEMD) model is built from a base model,
and a set of feature functions, also called simply features,
whose empirical expectations on some training corpus are
known. A fundamental difficulty with this technique is
that while there are typically millions of features that
could be incorporated into a given model, in general it
is not computationally feasible, or even desirable, to use
them all. Thus some means must be devised for deter-
mining each feature’s predictive power, also known as
its gain. Once the gains are known, the features can be
ranked according to their utility, and only the most gain-
ful ones retained. This paper presents a new algorithm for
computing feature gain that is fast, accurate and mem-
ory-efficient.

1. INTRODUCTION

In this paper, we present a new technique, called the ap-
prozimated function method, for computing the gain of a
feature of an MEMD probability model. The gain is a
well-known [4], well-studied [2] and widely-used figure of
merit that arises naturally in the theory of MEMD mod-
els. Because our method performs only one pass over the
training corpus, and consumes only a modest amount of
memory, it constitutes a significant advance over the cur-
rent state of the art. The best existing method requires
either multiple passes to determine a feature’s gain, or
makes one pass, but consumes so much memory that it
is infeasible for large problems with sophisticated base
models. Our algorithm can determine solutions to a prior
specified accuracy, and the incremental cost of attaining
higher accuracy is small. Furthermore, our algorithm is
perfectly parallelizable, among features, corpus segments,
or both.

The rest of this paper is organized as follows. In Sec-
tion 2. we introduce the mathematical framework appro-
priate to the problem, and present some basic results. In
Section 3. we describe the idea that underlies our method,
and in Section 4. we work through a full derivation. Sec-
tion 5. reports on practical experience with our method,
and Section 6. is a summary of the paper. The Appendix
gives a narrative summary of our notation.

2. BACKGROUND

MEMD modeling is especially valuable for constructing lan-
guage models, which are used in computer systems that
process and manipulate natural language. This is the
application that motivated this work, and from which
our example will be drawn. However, the techniques de-
scribed here can be applied to models built on any finite
discrete space.

As argued in [2], the appropriate figure of merit for
determining the rank of a feature is its gain with re-
spect to the base model, computed over some fixed corpus.
The gain is defined as follows. Let C denote the corpus,

containing N events—in the case of language models, N
words—and let P(C) be the probability of the corpus ac-
cording to the base model. Now construct an MEMD model
from the base model, constrained by the feature f alone,
and let o™ be the exponent determined for f. Let Pux(C)
be the probability of the corpus according to the resulting
model. Then the gain of the single feature f, which we
will write as Gy, is defined as

1. Prar(C) 1

Cr=wle ey ~ W

log Pra+ (C) — 1-1og P(C).
(1)
Thus the gain measures the improvement in cross-entropy

due to f, or more simply, the information content of f.
Note that this approach requires knowing the value of
o, which is the exponent associated with f in a trained
MEMD model that includes only this feature. Thus the
computational task boils down to training such a model.
Because this motivates both the prior art and our own

approach, we proceed to examine just what this entails.
Let w be the future that is to be predicted, and h
the history upon which the prediction is based. Writ-
ing g(w | k) for the base model and f(w,h) for the fea-

ture function, we define the conditional exponential model

psa(w | k) by

g(w | h)e>)

pfa('w | h) = Z(O{, h) : (2)

Here Z(o, h) is a normalizer, defined by

Z(a,h) =Y qlw] R)e*I M), (3)

w

Now suppose that any given w and & occur together in the
training corpus C with frequency & w, k). Then the prob-
ability of the corpus according to the model pso, written

Pso(C), is given by

Pra(C) = [[pralw | B)™. (4)

w,h

It is a remarkable fact, demonstrated in reference [4],
that the MEMD model, subject to the constraint equating
the empirical and model expectations of f, is precisely
Psa*(w | k), where o is uniquely determined by

a* = argmax Pso(C). (5)
We will exploit this result as follows. Let us define the

function Gy(a) by

Gi(a) = 57 los o). (6)

Note that the gain Gy is Gy(a*). Since P(C) is defined

by
P(C) = Hq(w | B)Tm) (7)

w,h

it does not depend upon «, and so we have at once

* = argmax Pyo(C) = argmax Gy(o). (8)

Thus the computation of the gain reduces to finding the
a* that maximizes G¢(a), and then determining the value
of G¢(a*). This is the problem that we solve.

3. THE BASIC IDEA

The task is to find a* = argmax, Gs(«), and then eval-
uate Gy¢(a*). The maximization is a straightforward ex-
ercise in calculus. The current method for solving this
problem [1] proceeds by applying Newton-Raphson itera-
tion to find a root of the equation G;'(a) = 0. For this
reason, we will call this the Newton-Raphson method.

The drawback of this method is that on each iteration,
the values of G'(er;) and G5 (o) are needed to estimate
a new root, oj41. This in turn entails either a complete
pass over the corpus, or inspection of each value gy, a
quantity that is defined below. For a large collection of
features, and a corpus containing tens of millions of po-
sitions, the former approach requires too much time, and
the latter requires too much memory. The computation
simply becomes infeasible. An additional computation is
required to determine G(a™).

Our method proceeds as follows. We begin by determin-
ing the exact value of G;(-) at a collection of S sample
points &g ... as—1. Next we determine an approximation
Gy'(-) to G4'(+), by interpolating a function through the
points {ag, Gy (20)}, ..., {as—1,Gf' (@s—1)). With this
approximation in hand, we solve the equation G;'(a) = 0
for its unique root &. We then use & as the solution to
our original problem.

This explanation, though accurate, begs the following
question: how does this help? If we have to solve the equa-
tion @f’(O{) = 0 in the end, why not just solve G;'(a) = 0
in the first place? Moreover, we have just argued that
evaluating G;'(-) at a single point is difficult, and here we
are proposing to evaluate it at S sample points.

The answer is two-fold. First, while determining G;'(+)
is difficult, determining its value at many points simulta-
neously, all known in advance, can be done at little addi-
tional computational effort. Most of the work consists of
determining at each corpus position whether or not the
feature function is active, and then accessing the appro-
priate base model probabilities. This information need be
determined only once at each position, independent of S.
(For this reason, the incremental cost of attaining greater
accuracy with our method is small.)

Second, for each feature, only the S values
Gyf'(ag)...Gy'(as—1) need be retained, rather than the
much larger set {gns}. These S values allow us to replace
each difficult-to-compute function G;'(-) by a very-easy-

to-compute function @f’('); thereafter we work with the
latter.

For clarity, in the rest of this document we will treat
the case of finding the gain of one single feature function
f, and we will suppress the f-subscript on the symbol G.
However, in a typical application of these results, f is a
member of a very large collection F of candidate features.
The intended application of this work is to compute the
gain, in parallel, of all its members.

4. DETAILED DERIVATION

We proceed to develop the approximated function method
from first principles. By our earlier argument in equations
(2)-(8) above, the problem is to find a* = argmax, G(«),
and then evaluate G(a*). The notation we use below 1s
discussed in the appendix.

4.1. Finding o*
Our strategy in this section will be to manipulate G(o) so
that its dependence upon f is localized to a single term.
We then differentiate this manipulated form and cull the
portion depending upon f; this will be the function that
we sample and approximate.

By use of equations (2), (4), (6) and (7), the function
G(o) may be rewritten as

G(a) =) 5w, h)log (Z(er,h) " g(w | h)e>S "))

w,h

=3 5w,) log g(w | B) (9)

w,h

where we have exploited the definition p(w,h) =
&(w,h)/N. Expanding the argument of the log in the
first summation and canceling as appropriate we have

G(e) =plf]- o — Zp(h)log Z(a,h), (10)

where §[f] is the empirical expectation of f(w,h).

If we now define f = {w | f(w,h) = 1} and gny =
Ewefh g(w | k), and make the change of variables vy =
e®—1; equivalently o = log(y+1); then after some algebra
we obtain

Gllog(y+ 1) = 7111 log(r+ 1) = 3 B og(rans + 1)
’ (11)

Next observe that each empirical history &° is umque
since at a minimum it consists of all words w”° ... w" l,
and these uniquely identify position ¢ of the corpus. Since
there are N positions in the corpus, we have

3(h) = 1/N ifh=~h" forsomei=0...N—1
)= 0 otherwise

(12)
Hence we may restrict the h-summation above to those
histories that actually appear in the corpus, yielding

G(log(v+1)) = 5lf] log(y+ 1) — s Y log(vans +1)

hec

(13)

The notation A € C beneath the sigma means that the

summation proceeds serially over the corpus. Here we

have written ry = 1/(N - §[f]) and moved this quantity

outside the summation, since it does not depend upon h.

From here on we focus our attention on the quantity in
parentheses. Writing

m(y) =log(y+1) =5 Y log(yans +1) (14)

we note that G(log(y + 1)) and m(vy) are related by mul-
tiplication by a constant. Hence it suffices to maximize
m(y). Differentiating m(y) with respect to «, and setting
the result equal to 0, we obtain

9ns
=0. 15
() = g - "2 s (15)

We can rewrite this as m'(y) = k() — I(y) = 0 where

1
k(y) = ——= d I(v)= — 16
(=277 and Uy)= w%wwl (16)

25

25

0
-2

Figure 1: Operation of the Approximated Function Method. The circled points are the {v;,l;) values, the line

passing through them is the interpolated function i(’y), and the black line is the function k(v). Their intersection
yields v*. Left, typical trigger feature, v* = 0.521. Right, typical link feature, v* = 11.687. The exact v* values

for these features are .545 and 11.589 respectively.

The maximum of m(y) is attained at the point 4*, where
k(y7) = Uy).

Note that for each history &, if gns # 0 then the sum-
mand simplifies to 1/(y 4 gny '), and if gny = 0 then it
vanishes. Thus we will write

e)
W) =rf§ —— (17)
it + qny

where the ~ indicates that the sum is restricted to those
positions where gny # 0. We will refer to I(7y), so defined,
as the gainsum derivative.

Now we apply the basic principle of the approximated
function method. Choosing a set I' of sample points
Yo ... ¥s—1, we scan through the corpus, accumulating
the S quantities

e; = i\% (18)

roe Vit ans”

for j =0 ... § — 1. The e; are known as the unscaled
deriwvative sample values, and the individual terms as the
unscaled summands. As a matter of efficiency, we can
accumulate the quantity 1/7; = N -p[f] at the same time:
it is easy to see that this is just the number of empirical
positions where f(w, k) = 1. Note that the computations
for 1/r; and the e; parallelize perfectly with respect to
segmentation of the corpus.

We now define [; = 7 - e; and these S values are exact,
to the machine precision. We call the l; the gainsum de-
rivative sample values; these are just the e; values, scaled

by 77. Finally, we interpolate an estimate /l\('y) through
the S points {{v0,l) ... {¥ys—1,ls—1}}, and numerically
solve the equation

k(v) = 1(y) =0 (19)

for v*. This technique is illustrated in Figure 1. We refer
to (19) as the canonical equation of our method. With y*
in hand, we work backward through the substitutions we
have made, obtaining o* as log(y* + 1).

4.2. Computation of G(a™)

It remains to compute the value of G(a*). Of course it is
possible to do this by evaluating m(y™) by equation (14),
and then multiplying by [f] as indicated by equation (13)

to obtain the gain. But this requires a second pass over
the data, and though this is less costly than the pass that
accumulated the I; values, it remains a significant com-
putational task.

Fortunately there is a bette/r\ approach, which is based

upon numerical integration of {(y). Recall from its defini-
tion that m'(y) = k(y) — (). Hence by the fundamental
theorem of calculus,

m(y) — m(0) = / m'(z)de =log(y +1) — / l(z)dz
(20)

where we have integrated k(-) explicitly. Approximating
{(z) by I(z) in this integral, and observing from equa-
tion (14) that m(0) vanishes identically, we obtain the
following approximation m(7y) to m(y):

A =logl+1) - [Topie. 1)

We will see below how to develop a compact, explicit ex-

pression for /l\('y), for which the numerical integration is
easy to perform. Thus we have at last

G(o”) = G(log(y* + 1)) = 5[] - m(v*) (22)

and our work is done. Note that because logarithms are
taken to the base e here, this formula yields the gain in
nats. To get the gain in bits, multiply the result of equa-
tion (22) by log, e.

4.3. Interpolating /l\('y)

We have investigated three ways to develop the approx-
imation I(y): decaying exponentials, cubic splines, and
polynomial reciprocals. Each one yields a different canon-
ical equation k(y)—I(y) = 0 to be solved for v*. Of them,
the method of polynomial reciprocals offers the best per-
formance, and it is the only one we will discuss.

In this method, we approximate I(y) by the reci-
procal of a polynomial c(y), thus I(y) = 1/c(y) =
1/(co + 1y + ey 4+ cnY™). The coeflicients of c(y)
are obtained by a least squares fit to the reciprocals of the
sample points. The resulting canonical equation can be
transformed to the polynomial equation

(co—1)+(er =1y +ey’ +--+eny” =0, (23)

feature exact degree 4 degree b

ol Gy ol GO BAG/G | v G(y) %AG/G
trigger 54518 2.2419 107 ° 52145 2.0275 107° 9.56 54941 2.2571 107° 0.68
link 11.5896 2.1696 107° | 11.6867 2.1694 107 0.01 | 11.4321 2.1715 10™* 0.09

Table 1: Accuracy of the Approximated Function Method. For each feature, this table reports exact v*, G(y*)
and two approximations to these quantities, and the percent error in G of the approximations (thus, 100-|AG|/G).
The G values are given here in bits; that is, the logarithm in equation (1) is taken to the base 2.

which exhibits better numerical behavior.
In our tests, this method yielded the best results. The

/l\('y) displayed in Figure 1 were both obtained this way.

To the eye the I(y) fit the data exactly, which may lead
the reader to believe that we contrived this, by taking
n = §—1. In fact this is not so: we used S =6 and n =4
for this figure.

5. PRACTICAL EXPERIENCE

We have investigated the accuracy and memory require-
ments of our technique for a large MEMD model, de-
scribed in [2, 3]. Our investigation of accuracy proceeded
as follows. Recall from equation (1) that Gy(a*) =
(1/N)log (Psax(C)/ P(C)), where Pso+(C) is the probabil-
ity of the corpus C according to a trained single-feature
MEMD model pso+(w | h). Thus by training such mod-
els, for selected features, by the improved iterative scal-
ing algorithm [4], we can obtain exact values for o™ and
G#(o*)—exact to the machine precision—for comparison
with the results of the approximated function method.

Table 1 supplies such a comparison. For two different
features, the table gives exact v* and G(v*), along with
two estimates of these same quantities, as computed by
our method. All the computations were performed with
six sample points, I' = {—1,0, 2, 6,10, 14}, and using the
polynomial reciprocal approximation. The different esti-
mates were obtained using reciprocals of polynomials of
degree 4 and b5 respectively. It is apparent from the table
that the approximated function method yields excellent
results, with agreement to better than 1%.

Our method requires only modest amounts of memory.
If F is the set of candidate features, and S = |T'| is the
number of sample points, then our method’s memory re-
quirement M(|F|,S) grows as B+ R -|F|+C|F|-S, where
B is a base memory allocation to hold the vocabulary and
other fixed objects, R is the memory needed to represent
a feature, and C is the size of a single e; value. Note
that neither the size of the corpus, nor the characteris-
tics of the base model, influence this expression. For the
ranking of 1,538,996 features discussed in [2], the memory
requirement at S = 6 was a modest 86 MB.

6. SUMMARY

We have presented the approximated function method—a
fast, accurate and memory-efficient algorithm for comput-
ing MEMD feature gain. As reported in [2], we have used
this method to compute the gain of over a million and a
half features, on a corpus of over 40 million words. We
hope that by enabling the ranking of large feature sets
on large corpora, this method will lead to better MEMD
models, more widely used.

ACKNOWLEDGEMENTS

This work was supported in part by the National Sci-
ence Foundation, under grant IRI-9314969. Ithank Adam
Berger for many interesting conversations in the course of
this work, and Stephen Della Pietra, Vincent Della Pietra
and John Lafferty for comments on this manuscript.

APPENDIX

We are interested in computing a family of conditional
models p(w | h). Here w is the future, drawn from a set

V = {w}, and A is the history. In the case of language
models, w i1s a word, and V is a fixed finite vocabulary.

We assume we are supplied with some large but finite
training corpus C, which consists of an ordered sequence
of N futures, w® w . w7, For language models, this
corpus is typically divided into sentences; the corpus may
also comprise additional information, such as the parse of
each sentence. At any given position w" of the corpus,
the history A" at this position consists of all the words
w® ... w'”! that precede w'. It may also include a great
deal of additional information as well, such as the parse
of the sentence that contains w°®.

We write g(w | k) for the fixed base model that is the
starting point for our computation, and p(w | A) for the
MEMD model we compute. Typically g(w | h) is either the
uniform model or an ngram model.

We write p(w, h) for the fixed empirical probability
model on {w} x {h}, and $(h) for its w-marginal. That is,
p(h) = Ewevﬁ(w,h). By “empirical probability model”
we mean that §(w, h) is obtained as a raw ratio of counts,
P(w, k) = &(w, h)/N, where &(w, h) is the number of times
future w appears with history % in the corpus C. We say
that the future, history pair w, h is an empirical point if
&(w, h) is non-zero; that is, if future w appears somewhere
in the corpus with history h.

Finally, f(w,h) is a fixed binary-valued feature func-
tion, defined on the space of all pairs {w} x {h}. This
space is typically infinite in the second coordinate. How-
ever, it suffices to consider only empirical histories, nec-
essarily a finite set. We assume that there is at least one
empirical point w, b such that f(w,h) = 1. The feature
function f(w,h) is said to be active when f(w,h) = 1;
otherwise inactive.

The expectation of f(w, k) with respect to p(w,), writ-
ten p[f], is defined as p[f] = Ew’hﬁ(w,h)f(w,h). Since
P(w,h) = &w, h)/N, this is just the number of positions
w" h* where f(w’, h*) =1, divided by the corpus size.

REFERENCES

[1] A. Berger, S. Della Pietra, V. Della Pietra, “A Max-
imum Entropy Approach to Natural Language Pro-
cessing,” Computational Linguistics, 22(1): 39-71,
March 1996.

[2] A. Berger, H. Printz, “A Comparison of Criteria
for Maximum Entropy / Minimum Divergence Fea-
ture Selection,” Proceedings of the Third Conference
on Empirical Methods in Natural Language Process-
ing, 97-106, Granada, Spain, June 1998. Available at

WWW.cs.cmu. edu/~aberger/1lm.html.

[3] A. Berger, H. Printz, “Recognition Performance
of a Large-Scale Dependency Grammar Lan-
guage Model,” Proceedings of the Fifth Interna-
tional Conference on Spoken Language Processing,
Sydney, Australia, November 1998. Available at
WWW.cs.cmu. edu/~aberger/1lm.html.

[4] S. Della Pietra, V. Della Pietra, and J. Lafferty,
Inducing Features of Random Fields, Technical Re-
port CMU-CS-95-144, School of Computer Science,
Carnegie Mellon, Pittsburgh, PA, May 1995.

