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ABSTRACT

A method of inter-frame transform coding of Line Spectrum
Frequencies (LSF) using the Discrete Wavelet Transform is
presented in this paper. Each component of the LSFs (or of their
linear transform) is treated separately and is decomposed into a
set of subband signals using the nonuniform filter bank.
Subband signals are quantized and coded independently. By the
appropriate choice of the mother Wavelet, subband signal with
the lowest rate comprises most of the LSF waveform energy.
Filter bank effectively decorrelates the input signal, enabling
more efficient quantization of the subband signals. A suitable
weighted Euclidean distance measure in the Wavelet domain is
proposed, defining optimal static or dynamic bit allocation of
the subband signals. It is shown that the average bit rate for
coding of the DCT transformed L.SFs can be reduced by 0.9 bits
per vector component by using a very simple Wavelet. The total
delay due to inter-frame coding is only 90 ms that is acceptable
even for a medium bit rate speech coders.

1. INTRODUCTION

In speech coding, speech signal is usually decomposed into two
parts: the envelope of the short time speech spectrum, and the
residual excitation signal. Decomposition is performed using the
linear prediction method, resulting in a set of coefficients of an
all-pole filter representing the short-time spectrum envelope.
One of the most popular parameter sets for filter representation
are the line spectrum frequencies (LSF), first introduced by
Itakura and Sugamura [1].

Due to the non-stationary behavior of the speech signal, linear
prediction can be employed accurately only over a short time
period known as a frame, 10 - 35 ms long. The parameters of
the spectrum envelope must be sampled at least once during this
period, to capture perceptually important spectral transitions.
On the other hand, the speech spectrum is slowly varying most
of the time and may exhibit stationarity extending over as much
as a few hundred ms. In a typical speech coder, spectrum
envelope is estimated and transmitted every 10 to 25 ms,
irrespectively of the current spectral variations, so the
parameters of successive spectrum estimates may be highly
correlated.

In applications where analysis time (delay) can be extended to
several frames, the inter-frame correlation can be exploited to
reduce the average bit-rate for spectrum envelope coding.
Various techniques have been developed to remove the
inter-frame redundancy in smoothly varying segments of
speech. The vector predictive coding method, originally
developed for coding of a blocked scalar process [2], was later

applied to the switched adaptive inter-frame vector prediction
for coding of the LPC parameter vectors [3]. Other approaches
such as segment quantization and matrix quantization [4]
encode several successive parameter vectors as a single entity.
They represent a generalization of the vector quantization
technique, where the codebook entries are matrices consisting of
a spectral vector sequence. Although the compression ratios
offered by these methods are significant, the codebook size and
complexity are prohibitive for the real-time implementations.

Another possibility of exploiting the inter-frame correlation is
by employing transform coding. The sequence of the
P-dimensional parameter vectors (e.g. LSFs) is treated as a set
of P time-varying signals (one signal for each vector
component), and transformed to the parameter 'frequency’
domain using any suitable linear transform. Quantization of the
decorrelated transform coefficients results in a lower average
spectral distortion for a given bit rate, due to transform gain.
Application of the two dimensional Discrete Cosine Transform
(2D-DCT) performed on a fixed block of successive LSF
vectors was investigated in [5]. It was found that even better
results could be obtained if the transform is performed after the
segmentation process, so the transform size (across time)
depends on the actual segment length. A segment is a block of
frames with similar spectrum pattern. In [6], the performance of
two linear transforms, DCT and the Karhunen-Loeve Transform
(KLT) for segmented (adaptive size) parametric speech coding
was investigated. Such transform size adaptation is only
mimicking the natural behavior of the Wavelets: better time
resolution for shorter events and better frequency resolution for
longer events. It has been confirmed by several studies that
Wavelet decomposition is much closer to the human speech
production and perception. Therefore, the approach of using
Wavelets as a time-frequency analysis/synthesis technique for
inter-frame decorrelation of spectrum parameter vectors seems
very appealing. The method of LSF coding in Wavelet domain
is presented in this paper, along with some preliminary results
verifying its effectiveness.

2. DISTORTION MEASURE AND LSF
INTRA-FRAME TRANSFORMATION

Before any discussion of the LSF coding itself, the appropriate
distortion measure must firstly be introduced, defining the
optimal bit allocation and enabling objective evaluation of the
results. Spectral distortion measure is commonly used as a
measure of system performance defined as in (1):
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where S, (m) is the unquantized and §n ((n) is the quantized

power spectrum of the n-th speech frame. N is the total number
of frames. It has been shown in several studies, that whenever
Dg drops below 1dB? the introduced distortion is perceptually
almost negligible. In practice, for the quantizer design, an
approximation of Dg is used, based on weighted squared
Euclidean distance (WED), d,, between the ungauntized and
the quantized LSF vectors, x, and Xy, :
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W, is the diagonal weighting matrix, which may depend on x,,
while k is the factor of proportionality. In this study, the Inverse
Harmonic Mean Weights were used due to their good
approximation of the Dg measure.

Due to the ordering property of the LSF vector components, the
neighboring LSF parameters within a frame (vector) are highly
correlated [5]. By removing this intra-frame correlation, the
quantization of the LSF parameters can be improved. This can
be done by transforming the P-dimensional LSF vector x, into a
new P-dimensional vector y, using any suitable PxP invertable
transform matrix A (e.g. difference LSF frequencies, DCT or
KLT), according to the expression (3):
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It can be shown that the WED between x, and X, based on
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matrix W, is identical to WED between transformed vectors
yn and y,, based on the transformed weighting matrix V, as in:
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Matrix V, is symmetrical but generally not diagonal. However,
if the quantization errors of different components of y, are not
correlated, only the diagonal elements of V, need to be
considered in evaluation of the mean value of d,2.

3. WAVELET CODING OF THE
TRANSFORMED LSF PARAMETERS

Each component of the transformed LSF vector is treated
separately as a time-varying waveform and is decomposed into
Wavelet coefficients using the Discrete Wavelet Transform
(DWT). If the consecutive transformed LSF vectors y, are
placed together into a matrix Y with P rows and N; columns,
then the DWT transform and its inverse can be expressed by the

conventional linear operator notation as in (5):
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Matrices Z and Z hold unquantized and quantized DWT
coefficients, respectively. The rows of the transform matrix B,
as well as the columns of B!, hold basis vectors, which are
actually dilated and translated Wavelet and Scaling functions.
Although this definition is mathematically complete, it does not
imply the possible of the real-time implementation required for
coding applications.
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A very simple and efficient realization of the DWT is based on a
nonuniform multirate filter bank, as shown in Figure 1. For the
proposed method, DWT of the sequence of the transformed LSF
vectors y, is performed using P independent identical filter
banks, each decomposing one of the vector components: y;(n)
up to yp(n). Analysis filter bank corresponding to the DWT
transform of the component i is shown on the left side of the
Figure 1., while the synthesis bank corresponding to the inverse
DWT, is shown on the right. For a J level DWT, the input signal
is decomposed into J+1 subband signals: one approximation
signal a; and J detail signals, d;, dj;, ... d;. These signals
correspond to the DWT coefficients in matrix Z. All the signals
are critically sampled, i.e. the total number of samples on all of
the J+1 outputs is identical to the total number of samples at the
input of the analysis bank in a given period of time. In the
synthesis bank, the subband signals are combined back together.

If the filters Ho(z) and Fy(z) are chosen to satisfy equation (6):

Fo(2)H(2) - Fo(-2)Ho(-2) =2 ©)
and if Hy(z) and F(z) are derived from Hy(z) and Fo(z) as in :
Hi(z)=Fy(-2). F(z)=-Hp(-2) (7

then the perfect reconstruction condition is satisfied, and the
resulting synthesized signal is only the delayed version of the
signal at the input. The total delay equals to (2J-1)L samples,
where L is the delay of a single level analysis/synthesis bank.
Causal and stable FIR lowpass/highpass filter pairs satisfying
(6) and (7) are known as biorthogonal filters and Wavelets
corresponding to these filters are known as biorthogonal
Wavelets. These Wavelets were employed in this study due to
their simplicity and efficiency.

The basic idea of the proposed LSF Wavelet coding method is
in the fact that instead of the direct quantization of the vector y,,
J+1 subband signals of each of the P analysis banks are
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Figure 1: Multirate filter bank realization of a 3-level Discrete Wavelet Transform and its inverse (order=L)



quantized, coded and transmitted. It was expected that due to
the transform gain, the same average spectral distortion could be
achieved using the lower bit rate. The purpose of the study was
to find out the suitable biorthogonal Wavelets that result with
the maximum compression of the transformed LSF vector, with
the minimum introduced delay.

4. DISTORTION MEASURE AND BIT
ALLOCATION IN WAVELET DOMAIN

Although the biorthogonal Wavelets exhibit many good
features, they also have one significant drawback: DWT using
the Dbiorthogonal Wavelets is neither orthonormal, nor
orthogonal transformation. It is only invertable. To fulfill the
spectral distortion requirement, the WED distortion measure,
d,%, between y, andy, must be translated into the Wavelet

domain, in order to define how accurately each of the subband
signals for each of the vector components must be quantized.
DWT transforms the rows of matrix Y, Y; to Yp, into the rows
of the matrix Z, Z, to Z,, where each row Y; corresponds to the
one of the P components of the vector sequence y, in time. A
new Wavelet domain WED, e, between the unquantized and
the quantized DWT coefficients in rows i of the

matrices Z and Z is introduced and defined as follows:
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It is obvious that the order of summation is changed. WED e/ is
the distortion through time that is finally summed up for all of
the P vector components, while d,? is the distortion across the
vector that is summed up for all of the N; vectors. Weighting
matrix U; can be found as in (9):
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where vy; up to vyg are the diagonal elements located on the
position (i,i) of the weighting matrices V, up to Vi B is the
inverse DWT matrix. As it was stressed before, if the
quantization errors of different DWT coefficients in matrix Z
are not correlated, only the diagonal elements of U; need to be
considered. The final step in the procedure is to recognize
which diagonal elements correspond to each of the subband
signal weights through time.

By evaluating (9), a simpler formulation of the subband weights
can be given, that is much closer to the concept of the filter
bank realization. Firstly, two row vectors must be defined: the

VNﬁi], where vy; up to vyg are the
and the
UiNfo]a where u;; up to upgne are the diagonal

input vector \N7i = [Vlii

weights  described as above, vector

elements of U;. Output vector can be split into J+1 sub-vectors :

Ui = “ﬁiaJJ tﬁidJJ tﬁidJ—lj'“ tﬁileJ (10)
where each sub-vector corresponds to one of the subband

signals: aj, dj, dip.....d;;. These weighting vectors are of
different lengths that are directly proportional to the rates of the

output

corresponding subband signals (ﬁiaJ and fJidJ are the shortest
and ﬁidl is the longest). FIR weighting filters Hwg(z) are

defined next. They are derived from the impulse responses of
the filter bank synthesis filters Hgy,(z) by squaring each of the
impulse response coefficients:

Nsb
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klflgb sb=ay,dy,dyq.....dq, (11)
Hgsp(z) = 3 hsgh(K)z ™
k=0

where Ng, is the synthesis filter order for the subband sb.
Subband signal weights ﬁiaj,ﬁidj up to ﬁidl are found by

filtering the weighting signal \N/i with the corresponding

weighting filters Hyy,j, Hwqj, up to Hwg; and finally decimating
the filter output by the same factor that is used for subband
signal decimation.

A special case of weighting is the static weighting for which all

= VNfi = Vi-
Since the input vector is constant, the filter outputs determining
the subband weights will also be constant and can be found by

the elements of \N7i are identical, vijj = voij = ...

multiplying the component weight Vl with each of the subband

weighting factors ﬁsb- Subband weighting factors are equal to
the DC responses of the weighting filters:

Nsb

ﬁsb = z (thb(k))2 s
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isb = Vi - Ugp. (12)
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where sb= a;, d,, dj_i....,d,. Factors ﬁsb are different for each of

the subband signals and depend on the chosen Wavelet type.
For biorthogonal Wavelets used in this study these weighting
factors varied from 0.551 to 2.5 and are direct consequence of
their nonorthogonality. Once the weighting in the Wavelet
domain is established, the optimal bit allocation can be
determined using any conventional technique. For the static bit
assignment, the average distortion Dy, should be minimized :
P —
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where %jgpis the variance of the subband signal sb and
Gish(bisp) is the variance-normalized minimum mean squared
error incurred in quantizing the subband signal sb with b, g, bits,

all for the filter bank i. ﬁsb is the normalized weighting factor

given by:

= Uy = _Ug = Uy = _Ug
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The minimization is performed by varying b; 4, with the average

number of bits per LSF vector component, b, as the constraint:
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5. PERFORMANCE RESULTS

The proposed LSF Wavelet coding technique was evaluated on
a limited database with the analysis parameters given in Table 1.
LSF vectors were intra-frame decorrelated using DCT. Optimal
scalar Lloyd-Max quantization was performed on these
transformed vectors and the average spectral distortion Dy was
calculated as a function of average bit rate per vector
component (denoted as no inter-frame coding on Figure 2.).
Distortion of 1dB was obtained with the average bit rate of 3.27
bits.  Unquantized DCT  transformed  vectors  were
inter-frame  decorrelated using DWT with 15 different
biorthogonal Wavelets (currently supported by the Matlab
Wavelet toolbox). All Wavelets were tested for decomposition
levels from J=1 to J=4. The transform coefficients were scalar
quantized using the optimal Lloyd Max algorithm, with static
bit assignment (same for all frames) according to (13). The
example of one cluster assignment matrix is given in Table 2.

Speakers : 1 male speaker ||| Sampl. fr.: 11025 Hz
Sentences: 16 nonsense Frame rate: | 100.2 Hz
# of frames: 6012 Window: 23.2ms
Preemphas. 0.9375 LPC order: | 12

Table 1. Experimental conditions

sb\i| 1| 2| 3] 4] 5] 6f 7] 8] 9]10f11]12
A |46124 22|17 |17[16[11|10[11]10|10]10
dy14) 9| 7] 5| 5] 4| 4] 4] 4] 4| 4| 4
di| 70 5| 4] 3] 2] 2| 2] 2]2]2]3]3

Table 2. Example of the cluster allocation matrix for 'bior2.2',
for] =2, b=232 and /Dy =1.05dB

J best 'bior2.2' worst

1 0.71 'bior3.7' 0.66 0.44 | 'biorl.5'
2 0.88 'bior6.8' 0.86 0.53 | 'biorl.5'
3 0.95 'bior6.8' 0.89 0.49 | 'bior3.1"
4 0.97 'bior6.8' 0.90 0.45 | 'bior3.1"

Table 3. Average bit rate reduction per vector component, Ab

D, was calculated for each of the 60 different Wavelet
combinations and for 14 different average bit rates. Three of
these 60 combinations are shown in Figure 2., for J=3. The best
and the worst results are summarized in the Table 3, for each
decomposition level. It is obvious that the best results are
obtained with the most sophisticated Wavelet ('bior6.8'), but the
results achieved with a very simple Wavelet, 'bior2.2', are only
slightly inferior. Two level decomposition using 'bior2.2'
decreases bit rate from 3.27 to 2.41, while the total introduced
delay is only 9 frames (it includes both analysis and synthesis
delays). It is also worthwhile to mention that the two level DWT
with 'bior2.2' requires in average only 4.5 additions, 2.25 shifts
and 0 multiplication per input vector component, so it
represents computationally excellent solution. The results also
demonstrate that for static bit assignment using more then 3
decomposition levels results in only minor bit rate reduction.

6. CONCLUSION

A method of LSF inter-frame coding using the Discrete Wavelet
Transform was proposed in this paper. The method can be
applied either to LSF vector directly or to any version of
linearly transformed LSF vector, therefore the intra-frame
coding can also be utilized. An efficient real-time realization is
suggested, based on the set of the nonuniform filter banks. A
transformation procedure for the weighted Euclidean distance
measure between LSFs is described, enabling optimal bit
allocation in the Wavelet domain. It was shown that even with
the static bit assignment and scalar quantization, the average bit
rate for LSF coding can be reduced by approximately 0.9 bits
per LSF component, compared to the case without inter-frame
coding. Since the subbands are quantized independently, the
quantization errors are localized within the band, so any
perceptually significant subband can be emphasized. The
proposed method is also very computationally efficient.
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Figure 2: Average spectral distortion as function of average bit
rate, with and without Wavelet inter-frame coding, J=3




