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ABSTRACT

Spectral/temporal segment features are adapted for isolated
word recognition and tested with the entire English alphabet
set using Hidden Markov Models. The ISOLET database from
OGI and the HTK toolkit from Cambridge university were used
to test our feature extraction technique. With our feature set we
were able to achieve 97.3% recognition accuracy on test data
with one pass using a whole word based recognizer. Gaussian
noise was also added to evaluate robustness of the feature set.
We were able to obtain recognition accuracies of 49.6% and
84.3% at SNR of -10dB and 0dB, respectively. Linear
discriminant analysis was also applied to the initial feature set
for a number of feature configurations and noise levels but,
generally, the performance was not improved.  We conclude
that the initial feature computations used are both very efficient
(best results obtained with 50 total features) and robust in the
presence of noise.

1. INTRODUCTION

Although automatic speech recognition performance has
improved substantially over the past several years, automatic
methods are still far inferior to most human listeners for most
tasks.   Automatic performance is quite good for limited tasks
with clean speech, but often degrades under adverse conditions,
or for the case of difficult phonetic distinctions.    For example,
stop consonants extracted from continuous speech can be
identified with over 95% accuracy [5], whereas the best
reported machine performance for the same task is about 82%
[7]. Similarly, human listeners are generally able to better
discriminate members of the “E” set  (b, c, d, e, g, p, t, v and z)
than are the best machine algorithms.    In this paper, we adapt
and modify feature extraction techniques which we previously
found to work well for phonetic classification [10], to isolated
word recognition and test these with the entire English
alphabet set.

In this work, each feature vector was comprised of 50 terms
which encode the trajectory  of short-time cepstral coefficients
over overlapping intervals 200 ms long.  Additionally, Linear
Discriminant Analysis (LDA), a linear transformation
technique that has been shown  to improve recognition
performance of many speech recognizers [4], was applied to
these features and  transformed terms were used for
recognition.  For the case of LDA, the number of terms used
was varied from 5 to 50.  We compared recognition results
obtained with these two set for features for  varying signal-to-
noise ratios.

The ISOLET spoken letter database from OGI was used in all
experiments presented in this paper [1]. This database suits the
objectives of evaluating our signal modeling/feature
computation methods  in many aspects. It is spoken in isolation
which was more convenient for testing than would have been a
continuous speech recognition system.   It is comprised of 7800
spoken letters uttered by 75 males and 75 females and is
suitable to train and test a speaker independent recognizer.  It
is a small but difficult task.  It was also previously used by
several researchers which makes it easier to directly compare
our results with published work.

This paper is organized as follows. Section 2 presents the
speech analysis procedures used in the study. Experiments and
results are given in Section 3. In Section 4, results are
discussed and, in  Section 5, final conclusions are given.

2. ANALYSIS PROCEDURES

For all experiments, every speech file from the database was
analyzed by an endpoint detection program in order to locate
more accurate endpoints. An endpoint detection scheme
proposed in [2] was used to locate initial endpoints, which
were then extended 30 ms in each direction (i.e., backward in
time  for the onset and forward in time for the offset) to allow
for some inaccuracies in the original detection, and also to
include a small amount of silence at the beginning and end of
each utterance. The endpoint detection algorithm from [2] can
be summarized briefly as follows. First the speech signal is
pre-emphasized to eliminate the DC component and to
emphasize the higher frequency components prior to
background noise estimation. Then, at each endpoint, a location
of low energy area is detected using energy thresholds derived
from the estimated background noise. The energy is computed
using 80ms non-overlapped frames. Then a shorter frame,
30ms, is used to locate the endpoint more precisely by finding a
location where  the maximum change of energy content of  two
adjacent frames occurs. In this step the frame is shifted one
sample at a time.

We adapted the endpoint algorithm of [2] slightly as follows, to
be more suited to the ISOLET data.  One fundamental
difficulty was that only short silence intervals were available at
the beginning and end of each utterance.  Therefore , we used a
frame size of 20ms and 10ms for the long frame and short
frame, respectively.  Also, for about 10% of the utterances, the
algorithm did not satisfy certain threshold criteria to indicate a
reliable result (often due to insufficient silence intervals for the
background noise estimates).  For those cases, we used the



endpoints in the original database.   Although every speech file
in the database was already endpoint detected, our pilot tests
indicated that the recognition performance on test data could be
improved by a small amount (0.3%) if our endpoint detection
program was applied.

For signal modeling/feature extraction, we use a variation of
methods previously presented for phonetic classification [10].
Summarizing briefly, after second order pre-emphasis, Kaiser-
windowed 20-ms speech frames are analyzed with a 512-point
FFT every 5 ms. For the results given in this paper, a Kaiser
window beta of 8 was used, corresponding to a somewhat
"smoother" window than the more typically used Hamming
window.  Using 10 basis vectors over frequency,  which
incorporate a  bilinear frequency warping, 10 modified cosine
terms over frequency were computed for each spectral frame.
These 10 terms, very similar to cepstral coefficients, were
computed with a bilinear warping factor of .45 over the
frequency range of 60 Hz to 7600 Hz.  These 10 terms in turn
were each represented by a 5 term modified cosine expansion
over time, using a "block" window with variable length. Thus
each block was represented by 50 spectral/temporal features.

For the experiments reported in this paper,  special attention
was given to adapting the block length to the position within
the utterance.   In particular, at the beginning of an analyzed
token, a block size of 6 frames (i.e., a 45 ms total duration,
including end effects of the analysis frames) was used.  As the
analysis window moved forward, the block size increased until
a maximum of 40 frames (215 ms total duration) was reached.
The block size was then fixed at 40 frames until  the end of the
token.  Time "warping" was also applied to each block, again
using a Kaiser window, but for this case the Kaiser window
beta was 5.0 for the 40 frame blocks.   The Kaiser window beta
also varied from 0 for the 45 ms blocks up to 5.0 for the
maximum block length.   Thus, the features gave better time
resolution for the onset portion of each word, and less time
resolution in later portions of each word.  The block features
were recomputed every 10 ms. No manual segmentation or
phonetic labeling was required or used.

Although the features described above perform well for both
phonetic classification and speech recognition, we investigated
the effectiveness and robustness of these features by
transforming them with LDA.  Both feature sets were also
tested  with clean speech and noisy speech.

We began  with clean speech utterances (as distributed by the
LDC)  and added various levels of Gaussian noise to them
before the feature extraction step was performed. In this work
speech signals with signal-to-noise ratios (SNR) of -10dB, 0dB,
10dB, 20dB, and 30dB were evaluated.

In our  implementation of the LDA technique, we compute two
covariance matrices, B and W.    The between class covariance
B is estimated as the grand covariance matrix of all the training
data (the same as for a principal components analysis).   The
within class covariance W is estimated  by computing the
average covariance of  time aligned frames of  data belong to
the same class.    Time alignment is accomplished  using
dynamic time warping to first determine a “target” for each
word by successively aligning  and averaging all tokens of that
word in pairs until only one token remains.    Covariance

contributions are then computed as variations about the target,
after another time alignment to that target.    These two
matrices are then used to create a linear discriminant analysis
transformation which maximizes the ratio of  between-to-
within class covariance. Our implementation of this technique
is similar to what is presented in [8].

3. EXPERIMENTS

The entire ISOLET database was used to test the recognizer.
The speech waveform was sampled at 16000 Hz with 16-bit
quantization. This database contains 5 subsets: ISOLET1,
ISOLET2, ISOLET3, ISOLET4, and ISOLET5. Each subset is
comprised of speech utterances pronounced by 15 males and 15
females. Each speaker utters the same word twice. In
Experiments I and II, all speech utterances from ISOLET1-4
(6240 total tokens) were used for training and all speech
utterances from ISOLET5 (1560 total tokens) were used for
testing. In Experiment III, training and test data were organized
into 5 groups by rotating the test set. Each group has one
database subset as test data and the remaining subsets as
training data. Recognition results were averaged over all
groups. Note that all database arrangements were done in a
speaker independent fashion.

For some cases, as shown below, additive Gaussian noise was
added to the speech files in order to test the robustness of the
features to noise at various levels.

In all cases the HTK toolkit version 2.1 from Cambridge
university [9] (distributed by Entropic Cambridge Research
Laboratory Ltd.) was utilized to provide a whole word HMM
based speech recognizer. Continuous density, full covariance
HMM’s were used, with  3 Gaussian mixture components, 5
states,  and  only self transitions and transitions to the next
state allowed.

With the HTK toolkit, initial HMM models are estimated by
uniformly segmenting each training token to have an equal
number of states (frames). Model parameters are computed
based on segments of  all training tokens. Viterbi decoding is
then carried out to determine the most likely segment
boundaries of each token and new boundaries are assigned to
it. Model reestimation is performed after every token had been
resegmented. These steps are repeated until the estimate does
not change or a specified number of iterations is exceeded. By
default the number of iterations is 20. The HKT toolkit also
provides the Baum-Welch reestimation program but we found
that in most cases our test results were superior with initial
models (about 0.1% to 0.4% higher without reestimations).
Since the toolkit was mainly designed for continuous word
recognition, recognition scores given in this paper are based on
tokens that yield the highest probability of the most likely state
sequences obtained by Viterbi decoding.   Thus Baum-Welch
restimation was not used at all in our reported work

3.1. Experiment I

The objective of this experiment was to evaluate the
performance of  our overall system with and without LDA
analysis in the presence of noise on both training and test
speech.   For these tests  white Gaussian noise was added to



the speech signal  such that the overall signal-to-noise ratio
varied from -10 dB to 30 dB. Also performance with clean
speech was tested. Test results for 50 initial features and 30
LDA transformed features are given.

Signal to Noise
ratio (dB)

Results with 50
original features

(%)

Results with 30
LDA features

(%)

-10 46.1 49.6

0 82.5 84.3

10 92.9 92.0

20 96.6 96.3

30 96.6 96.2

clean speech 97.3 96.5

Table 1:   Test recognition results for various signal-to-
noise ratios, using original features or LDA
transformed features.

Discussion

The result of 97.3% (42 error tokens) with 50 original features
for clean speech is the baseline result for this work.  Note that
this result was obtained after numerous pilot tests to used to
adjust parameter values.   It can be further broken down in
terms of  alphabet subsets as follows.  The accuracy on the E
set portion of the alphabet (B, C, D, E, G, P, T, V, and Z) is
96.1%. The performance on the M and N alphabet is 90.0%
and performance on the rest of the alphabet is 99.1%. Note that
performance is poorest for the recognition of  M and N.
Although some attempts were made to implement a two pass
recognizer, with the goal of the second pass to improve
performanceon the E set and the M/N pair similar to [6], none
of our attempts improved this baseline result.

The total number of errors for the test data was so few (42
tokens in error out of 1560 total), that is was very easy to
visually and auditorily inspect all error tokens in detail.   Based
on this inspection, we concluded that all remaining errors are
due to three sources:   1, In some cases the endpoints are still
not  correct with  either extra noise, or truncation problems;  2,
Some of the tokens are simply extremely difficult to
discriminate, even with careful listening; and finally 3, some of
the error tokens, although clearly recognizable, were
pronounced in kind of slow "drawl," and thus much longer than
average.

3.2. Experiment II

For this case, recognition performance of the alphabet set
experiments was examined on test data as the number of  LDA
transformed features varied from 5 to 50 on clean speech and
degraded speech (SNR=15dB). In both cases, test performance
is quite stable from 15 features to 50 features, with slight
degradation in performance with fewer than 15 features.
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Figure 1:   Test recognition results with various number of
LDA terms on clean speech and degraded speech.

3.3. Experiment III

We conducted this experiment in order to evaluate whether or
not our very high results were due to unfair tuning of our
parameters to the test set ISOLET5.  Therefore, for this
experiment each database subset was selected as a test set and
the remaining data were used  for training our recognizer. For
example if ISOLET1 was used for testing then ISOLET2-5
were used for training. The following table depicts recognition
accuracy on each set of test data. Average recognition results
are also shown in the last row. Note that these experiments
were all performed with our initial features (50 terms).

Test set Recognition Accuracy (%)

ISOLET1 98.0

ISOLET2 97.0

ISOLET3 97.6

ISOLET4 97.7

ISOLET5 97.3

Average = 97.5%

Table 2:   Test recognition results on various test sets.

The results indicate that the features described in this paper
perform very well on all subsets of the ISOLET database.

 4. DISCUSSION OF RESULTS

The best speaker independent performance on OGI’s ISOLET
database with the same test data as used for our work was
obtained using a 2-stage, phoneme-based, context-dependent
HMM recognizer [6].    The result reported was 97.37%.  The
next best reported result of 96.0%  was obtained using 617
features and a neural network approach [3].  Our recognizer
was able to achieve 97.3% of accuracy with a simple one pass,
word-based recognizer.   We also use a relatively low number
of features (50) which are computed in a straight forward
manner.   We believe our methods would be much easier to
duplicate and to apply to other tasks than an isolated word



alphabet recognizer than would be the methods reported in the
other two studies mentioned in this paragraph.

One puzzling result, at least to us, was that LDA did not
improve recognition performance for most cases. It only
improved performance slightly at very high noise levels, -10dB
and 0 dB.   In the developmental stages of this work, we did
observe, however, that for feature parameter values that did not
result in optimal  performance, LDA did usually result in
improved accuracy.   We hypothesize that if original features
are very good,  LDA is not particularly beneficial.   We further
hypothesize that the feature modeling techniques described in
this paper are already beyond the point that LDA can result in
further improvements.

However, as shown by Experiment II, LDA can be used to
reduce the number of features by a factor of about 3 with only
modest decreases in performance.   Results of Experiment II
show that 15 LDA terms could be used for recognition without
losing much accuracy. Thus the feature reduction capability of
LDA still holds true.

5. CONCLUSIONS

Methods for compactly representing the spectral temporal
structure of speech have been applied to recognizing the letters
of the English alphabet set. The use of LDA does not result in
any improvement with either clean or noisy speech.   We
conclude  that the signal modeling techniques described in this
paper, and also as reported in more detail previously, apply
very well to difficult isolated word recognition tasks.   The best
result obtained from this test is as good as the best reported
result for this database.

Although the signal modeling methods used in this study are
very similar to the commonly used cepstra and delta cepstra
features, there are also many important differences which, we
believe, lead to improved performance. The most obvious
difference is the greater consideration paid to temporal
information in the feature set.  In particular, as compared to
most reported work, our features use more trajectory terms and
a much longer time interval.
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