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ABSTRACT Post-processing of HMM N-Best lists is not a new technique.

However, the durational model used in the post-processing is dif-

In this paper a method of integrating a model of suprasegmeferent in that it imposes syllable-level elastic constraints on the
tal duration with a HMM-based recogniser at the post-processingurational behaviour of speech segments. The elastic constraint
level is presented. The N-Best utterance output is rescored usi@grational model proposed in this paper is based upon previous

a suitable linear combination of acoustic log-likelihood (provideduork in the field of speech synthesis [3]. The model definition and

by a set of tied-state triphone HMMs) and duration log-likelihoothow it is integrated with the HMM at the post-processing level are
(provided by a set of durational models). The durational modeliscussed in detail in sections 3 and 4.

used in the post-processing imposes syllable-level elastic con-

straints on the durational behaviour of speech segments. The proposed model of duration is tested, using a variety of con-
straint units including two different syllable-like units, a fixed-

Results are presented for word accuracy on the Resource Madize window of 3 phones and individual phone units. All the above

agement database after rescoring, using two different syllable-likfeatments are repeated for phone sets derived using a number of

constraint units, a fixed-size N-phone window and simple (no conevels of prosodic subcategorisation. The prosodic contexts for

straint) phone duration probability scoring. which the phoneme data is subcategorised are chosen according to
a stepwise CART tree correlation analysis. The experimental de-
1. INTRODUCTION sign and the choice of prosodic subcategorisations are discussed

" ) in more detail in section 5.
Although traditional Hidden Markov Models (HMMs) have

proven to be highly successful at acoustic classification they in- 2. MATERIALS
herit an implausible durational model through the mathematical

behaviour of their state transition probabilities. Hidden SemiThe utility of the proposed elastic constraint model is tested on the
Markov Models [7] have partly overcome this problem by replacResource Management (RM) database. The database is first sep-
ing the discrete probability associated with a state’s self-transitiofvated into 3 speaker-independent sets of utterances for training
with a continuous duration probablllty distribution. However, the(3990 utterances)‘ cross-validation (1110 utterances) and testing
utility of this treatment of duration is constrained by its assump¢g9o0 utterances). A set of multiple mixture, cross-word, (tree-

tion of the Markovian principle of independence at the suprasegrased) clustered state, tied triphones with back-off biphones and
mental level. This assumption seems to be at odds with previoygonophones is then trained on the training set.

theoretical studies on segmental duration ([6], [11], [10]) which

focus on suprasegmental effects. The phonetic segmentation required for the durational model is
obtained from the training set using the fully trained HMMs in

More recently, research in the field of speech recognition has f@orced alignment mode and the dictionary used for training and

cussed on modelling durational behaviour at the suprasegmeniatognition is anost likely pronunciatiouictionary with a single,

level to account for individual theoretical phenomena (e.g. postixed phonetic transcription for each word.

vocalic context [4] and speech rate [5]). A more complete ac-

count of the full spectrum of theoretically accepted suprasegmein recognition mode, the HMMs are required to produce a list of

tal durational effects has also been presented in [9], with a view the 30 best-scoring hypotheses for each test and cross-validation

improving HMM-based recognition through re-scoring of N-Bestutterance, using a word-pair grammar. The best performance

sentence output. achieved on the test set of utterances is 94.19% word accuracy
on the top-scoring hypothesis and 98.73% word accuracy on the

In this paper a method of integrating a model of suprasegmeimost accurate hypothesis out of the top 30.
tal duration with a HMM-based recogniser at the post-processing

level is presented. The N-Best utterance output is rescored usiiigpe latter figure quoted is the maximum accuracy achievable,
a suitable linear combination of acoustic log-likelihood (providedjiven only the top 30 hypotheses to choose from. Thus, in re-
by a set of tied-state triphone HMMs) and duration log-likelihoodying on an N-Best list as our input for rescoring, we have sacri-
(provided by a set of durational models). The database used in tHised 1.27% word accuracy. In assessing the utility of the duration
task (Resource Management) and the baseline HMM architectuneodel proposed in this paper, 98.73% is considered tqdsefact
used to obtain the N-Best Lists and acoustic log-likelihood scorescore.

are described in section 2.



3. THE ELASTIC CONSTRAINT MODEL 3.1. Methodology

The concept of elastic constraints is based upon previous work In order to assign a likelihood score to an utterance’s durational
the field of speech synthesis. The elasticity hypothesis [3] sugpattern, a probability has to be assigned to every syllable’s K-
gests that, within a syllable, phonemes behave like springs of difleviation. It was found in [8] that, for a small database of pho-

ferent lengths (mean durations) and elasticities (standard deviaetically rich sentences, syllable K-Deviation was well modelled

tions). That is to say that if the syllable lengthens it is hypotheby a set of gamma distributions, defined solely by the number
sised that all its constituent phonemes should lengthen in propast phones contained in the syllable. Thus, K-Deviations are cal-
tion to their elasticities. i.e. the ratio of a phoneme’s lengtheningulated for all syllables in the training set, from which a set of

to its elasticity remains constant throughout the syllable. gamma distributions are derived.

In [3], Campbell and Isard state thalt segments in a given syl- However, monophonic syllables always exhibit zero K-Deviation.
lable fall at the same place in their respective [duration] distribu- Therefore, an alternative method of scoring is required for these
tions’ i.e For any given syllable, there exists a numhir, such  syllables in order that hypotheses aren’t favoured purely because
that, for all segments within that syllable of the number of monophonic syllables they contain. To this
end, gamma distributions for individual phonemes which occur
in monophonic syllables are computed from the training data and
all phonemes that constitute monophonic syllables within a given

Durationgseg = + Ko 1
se9 = Hoeg 9 ) hypothesis are scored against these gamma distributions.
For a given speech segment, Esscore is defined as its nor- 4. POST-PROCESSING
malised distance, in units of standard deviation, from its mean
duration. To rescore an utterance, its acoustic log-probability is first lin-
early combined with the total N-phone syllable K-Deviation log-
probability for the utterance.
Zseg = du’f'seg — Htype (2)
Otype

In(Psr) = (1 — a)in(Pa) + a E In(Pn) (5)
utt
For a given syllable, it&-Score is then defined as the average Z

score of the phonemes within the syllable. where

e P4 = probability of acoustic event for an utterance

N
Koyt = dursy”;—zml"“ 3) e Py = probability of a durational K-Deviation for an N-
Eizl Oi phone syllable

Strict adherence to Campbell and Isard’s elasticity hypothesi-ghe resulting log-probability is then linearly combined with the

would imply that all phones within a syllable have the same Z[nonopho_nic syllable'durational ng-probabilities to arrive at a fi-
score, and hence the syllable K-score is exactly equal to all phoH(’fi\lI combined acoustic and durational score.
Z-scores within the syllable.

A measure of a syllable’s deviation from this hypothesis is known In(Protat) = (1 = B)in(Par) + 8 Z In(P1) ©)
asK-Deviation. This is defined as the root mean square Z-score utt

deviation from the syllable K-score, calculated over all phones

within the syllable. A zero K-Deviation thus corresponds to é/vhere

syllable’s perfect fit to the Elasticity Hypothesis.
e P = probability of a given duration for a phoneme occurring

as a monophonic syllable

N 2
Kdevgy; = \/Zil(KSy” — Zi) (4) Inthe above calculations, the optimal linear sum weightnd
N (3 are defined to be those weights which maximise the word accu-
racy score on a separate cross-validation set of 1110 utterances.
In reality, syllables don't exactly fit the elasticity hypothesis.
However, this paper tests the hypothesis that strict elasticity is 5. EXPERIMENTAL DESIGN
simply an underlying norm, from which any variance is deter-
mined systematically as a result of prosodic contexts. Identifying_ 1 . Testing the Constraints
the main causes of such systematic variance and factoring these
effects out of the data may lead to a useful model of duratiorin order to test the Elastic Constraint model of duration, the per-
based on underlying elastic constraints. formance of a number of alternative versions was measured



A baseline durational model is constructed, using only phone du- cumulative correlation (%
ration distributions in isolation. The word accuracy of this mode| Factor Classes| Onset Vowel
allows us to see whether the elastic constraint model has actugllyphonemic identity 39 51.75 51.75
achieved anything. syll position in utt 4 60.06 60.73

this syll stress 2 64.63 64.48
Furthermore, it is possible that elastic constraints exist, but thatsyll position in word 4 67.34 67.18
the syllable as a unit of constraint doesn’t buy us any more pgr-subsyllabic position 3 69.67 70.9T
formance than a non-linguistically motivated fixed-size window next syll stress 3 70.98 69.15
of phones would. To test for this possibility, we have tried replac- clustered C? 2 71.98 71.99
ing the syllable in the model with a sliding window of 3 phones. | prev syll stress 3 72.65 72.64

ambisyllabic C? 2 72.74 N/A™™
In both of the above alternative duration models, even thoudhijn stressed word? 2 72.76 72.68
we are moving away from a syllable-like unit of constraint, th

prosodic contexts of the phonemes are still largely dependent qable 1: Cumulative correlation (using a greedy algorithm) for
our choice of syllable-like unit. We chose to perform all theprosodic factors using 2 different syllable-like unit definitions:
rescoring in these cases using the maximal onset definition (g®iaximal) Onsetand Vowel (initial) units. *next syll stresand

defined in section 5.2). subsyllabic positioave swapped relative importance for vowel-
. ) initial units. **ambisyllabic C4s defined for maximal onset units
5.2. Syllabification only.

We have chosen two syllable-like units for inclusion in our model ) .
largely because their operational definitions are simple to impldest data using the durational model.

ment.
A method ofsynthesisinghe durational parameters for such gaps

Maximal Onset: Each syllable contains a single vowel and thehas been devised which borrows from Dennis Klatt’s work on du-
syllable onset length is maximised subject to a set of phonatactftion. In the MiTalk system [1jactualduration is calculated us-
constraints. ing a linear transformation of anherentduration, according to

a number of prosodic rules. In this paper, for all possible pairs of
Vowel Initial: Each unit begins with a vowel and includes all prosodic contexts, a linear transformation for the durational mean
consonants within the same word up to the next vowel. Wordf the form
initial consonants are grouped with the unit containing the first
vowel in the word.

Mp; =a+ blj’Pj (7)

5.3. Context Dependency

Initially rescoring is performed using models based on contexz-imere"pi Is the mean duration of phonein contexts, is es-

independent phone duration distributions. However, factors oth Fnated by linear regression. This transformation represents the

than the phone identity itself are known to affect phone durationaverageeffect that going from context to contexti has on the

In order to normalise for these factors, we split the phoneme da{i%]r'atlonal mean O.f any given phone duration distribution. In' ap-
ying transformations from seen to unseen contexts, only reliable

ools according to a number of prosodic contexts. p . . )
P 9 P linear transformations (correlation 0.5) are considered.

To determine which prosodic factors are important, and in Whicpmwever the behaviour of the distribution standard deviation un-
order they should be applied in this task, for each definition of th ' o .

syllable-level unit we trained a CART tree [2] on the training seﬁer. Sl_JCh a transfo_rmanon IS Ie_ss easy to modgl reliably. In the
of 146700 phones. Table 1 is a stepwise correlation analysis H}ajonty of cases, _Ilnear regression of context pairs prpduces min-
prosodic factors which determine phone duration in the traininIrnal correlation with the actual data. Thus, for any given phone,

set, using a greedy algorithm, as produced by the resulting CA average standarq deviation is computed using all examples of
tree. that phone present in the database.

Rescoring is repeated using context-dependent phone duration 7. RESULTS

distributions by incrementally splitting the data according to the .
above factors, in the order specified in the the table 1. In thiEable 2 presents word accuracy and error correction for all rescor-
paper, we only consider the first 4 factors. ing models tested. All models have improved the performance

of the baseline HMMs, demonstrating that durational information

6. DEALING WITH SPARSE DATA can be used to correct mistakes made by a HMM in the post-

processing stage.

One of the major limiting factors inherent in such an exhaustivti ncourading that our best result w hieved using the el
classification of phonemes is that of data sparsity. In some cas% S éncouraging that our best resuft was achiéved using the elas-

the gaps in the data may be accidental rather than systematic. | E%constramt model with phonetic data partitioned according to

. : . . inali i % of all possible error corrections be-
these accidental gaps which need to be filled in order to score tH erance finality, with 20 . p . )
gap Ing made. The fact that adding extra constraints C & D did not



A A+B A+B+C | A+B+C+D 10.
Phoneme 94.58 94.98
8.59% 17.40%
3 Phone 94.94 94.99 11
Window 16.52% 17.62% '
Vowel-Initial 94.88 94.98 94.97 95.04
Syllable 15.20% | 17.40% | 17.18% 18.72%
Max-Onset 94.77 95.10 95.06 94.93
Syllable 12.78% | 20.04% | 19.16% 16.30%

Table 2: word accuracy results for RM test set using differ-

ent constraint units in the durational model and different levels
of syllable-level prosodic context for the phone-set: context-free
phoneme identity (A), utterance finality (B), lexical stress (C) and
word finality (D). The figures in bold are percentage of possible
error corrections made.

further improve the results may implicate the simplistic averag-
ing method proposed for modelling unseen standard deviations.
The elastic constraint model makes important use of means and
standard deviations.

An improved operational syllable definition might also yield bet-
ter results.
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