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ABSTRACT

This paper describes a novel method that models the corre-

lation between acoustic observations in contiguous speech

segments. The basic idea behind the method is that acous-

tic observations are conditioned not only on the phonetic

context but also on the preceding acoustic segment ob-

servation. The correlation between consecutive acoustic

observations is modeled by polynomial mean trajectory

segment models. This method is an extension of conven-

tional segment modeling approaches in that it not only de-

scribes the correlation of acoustic observations inside seg-

ments but also between contiguous segments. It is also a

generalization of phonetic context (e.g.,triphone) modeling

approaches because it can model acoustic context and pho-

netic context at the same time. In a speaker-independent

phoneme classi�cation test, using the proposed method re-

sulted in a 7{9% reduction in error rate as compared to the

traditional triphone segmental model system and a 31% re-

duction as compared to a similar triphone HMM (hidden

Markov model) system.

1. INTRODUCTION

1.1. Intrasegment Correlation

Most current speech recognition systems are based on frame-

based measurements. HMM systems make the further as-

sumption that these frames are statistically independent,

given the state. The reason for making this assumption,

however, has to do with computational e�ciency in imple-

menting practical systems, not with theoretical or exper-

imental evidence. Actually, we know experimentally that

the frames of a speech segment corresponding to one pho-

netic event are highly correlated. Consequently, the price

of computational e�ciency is degraded recognition accu-

racy.

1.2. Segmental Models

To alleviate this problem, several systems have been pro-

posed recently that use segment-based measurements (usu-

ally calculated from frame-based ones) to jointly model the

observations corresponding to one phonetic segment. Such

models are usually called segment models, of which a com-

prehensive overview is presented in [5].

1.3. Intersegment Correlation

Segment models address the problem of intrasegment cor-

relation. Perceptual experiments, however, indicate that

signi�cant correlation exists not only inside phonemes but

also between neighboring ones [2].

The most important clue for the identity of certain con-

sonants is the spectral change (formant transition) in the

preceding and following vowels.

Context dependency is often modeled by using separate

models for the same phoneme as a function of the adjoining

phonemes (triphone models) [4]. In this paper, we call this

method phonetic context modeling.

An analysis of the basic maximum a-posteriori formulas of

automatic speech recognition suggests that it is possible

to model not only phonetic context, but also observation

context. That is, to determine the probability of a segment

observation, we can use both the identity of the adjacent

phonemes and the acoustic observations corresponding to

them.

In the next section we derive the basic equations for model-

ing observation context. The formalism will be introduced

using class-conditional probabilities. After deriving the ba-

sic formulas, we shall describe one way of implementing

them using polynomial mean-trajectory segment models.

In Section 4 we review the results of a phoneme classi�ca-

tion experiment with observation context modeling and we

summarize our paper in Section 5.

2. MATHEMATICAL FORMULATION

The most common approach to continuous speech recog-

nition is to �nd the word (phoneme) sequence, W , which

maximizes the joint probability (likelihood) of the acoustic

observation, A, and the word sequence, W .

W
�

= argmax
W

p(A;W ) (1)

= argmax
W

p(AjW )p(W ): (2)

In the usual triphone-based approach P (AjW ) is factorized
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Figure 1. Summary of the notation used in the paper

to

P (AjW ) =
Y

i

P (Aijw
i+1

i�1); (3)

where Ai is the i-th acoustic segment observation and the

conditioning term is the triphone centered around phoneme

wi in W .

Because our method does not assume the independence of

the contiguous segment observations Ai and Ai�1, P (Ai)

is conditioned not only on the triphone but also on the

preceding segment observation:

P (AjW ) =
Y

i

P (AijAi�1; w
i+1

i�1): (4)

3. IMPLEMENTATION

Class-conditional probabilities are usually estimated by den-

sity estimation methods, which can not be directly condi-

tioned on continuous parameters. Therefore, we have to

use the basic de�nition of conditional probabilities in or-

der to model the dependence on Ai�1 in Eq. (4):

P (AijAi�1; w
i+1

i�1) =
P (Ai�1; Aijw

i+1

i�1
)

P (Ai�1jw
i+1

i�1
)

: (5)

The terms in the numerator and denominator are both

usual triphone probabilities and standard methods exist

for estimating them. However, it is important not to use

a distribution in the numerator that assumes the indepen-

dence of Ai and Ai�1, because our purpose is to model the

correlation between them.

Our implementation uses polynomial segment (mixture)

models to estimate this equation. Separate models are

used to estimate the numerator and denominator. We

have a set of segment observations fAig, in which each

element Ai is the realization of the same triphone. To

estimate the numerator of Eq. (5), we make the new set

fA�i g = f(Ai�1; Ai)g, in which each element, A�i , is the

concatenation of Ai from the original set and the acoustic

segment observation, Ai�1, preceding it in the original ut-

terance. Using this set of modi�ed segment observations

and the estimation algorithm described in [1, 3], we can

obtain a model that implements the numerator of Eq. (5).

Because a segment model obtained in this way does not

assume the independence of Ai and Ai�1, it can model the

correlation between them.

The denominator is estimated in a similar way, here the

modi�ed set, fA�i g = fAi�1g, consists of the segment ob-
servations preceding each Ai in the original set.



P (AijAi�1; w
i+1

i�1
) is then obtained by taking the quotient

of the likelihoods produced by the two models.

The computational complexity of the method is about three

times that of the basic segment modeling approach without

acoustic context modeling. Calculating the numerator re-

quires about two times the computation because the length

of (Ai�1; Ai) is twice that of the length of Ai, on average.

Calculating the denominator requires the same amount of

computation as the original method because the length of

Ai�1 is the same, on average, as the length of Ai. This

value can, however, be decreased by using only the last

few frames of Ai�1, both in the numerator and in the de-

nominator. Using only the frames close to the segment

boundary is warranted by the assumption that the corre-

lation is the most signi�cant between the frames close to

the transition region.

4. EXPERIMENTAL EVALUATION

In order to evaluate the practicality of the proposed

method, speaker-independent phoneme classi�cation ex-

periments were performed using the \ATR 520 Important

Japanese Words" database. Fifteen male and �fteen fe-

male speakers were used for training and another �ve of

each gender were used for testing.

The speech was originally sampled at 12 kHz. Every 10

milliseconds a vector of 13 Mel-warped cepstral coe�cients

was computed using a 25-millisecond window of the speech.

In some of the experiments, in addition to these \static"

coe�cients, the so-called delta and acceleration coe�cients

were also used. These coe�cients were calculated using the

regression method with �2 frames of data.

After a word was parameterized, the mean vector was de-

termined and subtracted from the parameter vector of each

frame (cepstral mean removal) in order to increase the ro-

bustness against speaker and channel variations.

The triphone models used in some of the experiments were

of the generalized triphone type described in [4].

The results of the experiments are summarized in Tables 1{

4.

The models had three mixtures when not indicated oth-

erwise. The HMM models had three states with a diago-

nal covariance matrix. The polynomial segment models

(PSMs) had second order of mean trajectory polynoms

when not indicated otherwise, while the variance trajec-

tory polynom order is displayed in the tables explicitly.

We note that in Table 1 the PSM models had a smaller

number of free parameters than the HMMs, because of the

constant variance trajectory. The following duration mod-

els were evaluated: no explicit duration model (NO), nor-

mal duration distribution (DN), and the gamma duration

distribution (DG). The HMMs always used the inherent

exponential duration model.

The segment models with observation context modeling

took into account only the last 20 ms of the preceding

segment. This value was chosen so that the entire transi-

tion region could be included and the distant acoustic data

avoided.

Two ways of using acoustic context were evaluated. The

�rst way implemented only the numerator of Eq. (5). That

is it calculated

P (Ai�1; Aijw
i+1

i�1): (6)

The second way implemented the entire Eq. (5). The two

methods are indicated in the tables by their equation num-

bers.

Table 1 compares the performances of the HMM and the

di�erent PSM models. The following conclusions can be

drawn from the results. The use of the segment model de-

creases the error rate, as compared to that of the HMM,

even in the case of a smaller number of free parameters

(the PSMs used a static variance polynom). Using Eq. (6)

to model acoustic context decreases the error rate signif-

icantly in the case of triphone (CD) models but hardly

at all in the case of monophone (CI) models (5.71% vs.

0.52%). However, although Eq. (5) is suitable for contin-

uous word recognition, using it to model acoustic context

always increases the error rate in both cases. Using an ex-

plicit duration model decreases the error rate of the PSMs

further, and a normal distribution seems to be better for

this purpose than the gamma distribution.

Table 2 displays a more detailed comparison of the triphone

HMM and di�erent triphone PSMs. All of the PSMs eval-

uated in this table produced a smaller error rate than the

HMM. It is apparent that increasing the variance polynom

order decreased the error rate. It is also con�rmed that

the normal duration distribution gives the largest improve-

ment, although the gamma distribution is also better than

no explicit model. Finally, when Eq. (6) was used to model

acoustic context the error rates in all cases decreased, and

the opposite was true when Eq. (5) was used.

The e�ect of the length of the acoustic observation contect

is shown in Table 3. Here triphone PSMs are compared

which use an acoustic context between 0 and 50 millisec-

onds. The optimum size of the acoustic context is about 30

milliseconds. This con�rmes that only acoustic data close

to the transition region is useful.

Finally, Table 4 compares the error rates of a set of models

with the same number of free parameters for easier com-

parision. We can see that the use of the segment model

resulted in a 25{26% lower error rate as compared to the

HMM. Using of acoustic context decreased the error rate

by another 7{9%.

5. SUMMARY

This paper proposed a method for modeling the correla-

tion of acoustic parameters between adjacent segments.

The results of the experiments indicate that for the given

phoneme classi�cation task, using an observation context

consistently decreases the error rate. The error rate of the

triphone polynomial segmental model system was 9{13%



Table 1. Speaker-independent phoneme classi�cation er-

ror rates (%). Monophone (CI) and triphone (CD) mod-

els, as indicated. 13 dimensional feature vectors (mel-

cepstrum). Constant variance trajectory polynoms (1 free

parameter).

Model Dur. Obs. Parameters

type model ctxt. CI CD

HMM NO NO 31.98 15.47

NO 28.76 12.78

NO Eq. (6) 28.61 12.05

PSM Eq. (5) 29.88 13.22

DG NO 28.14 11.81

DN NO 27.42 11.69

lower when an observation context was used than when

one was not. This improvement is signi�cant and veri�es

the practicality of the new method for phoneme classi�ca-

tion.
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Table 2. Speaker independent phoneme classi�cation er-

ror rates (%). All the models were triphone models. 39

dimensional feature vectors (cepstrum, � and �� cep-

strum). The variance polynom order was between 0 and 2,

as indicated.

Model Var. Obs. Duration Model

type poly. ctxt. NO DN DG

HMM, 3 states NO 13.57 | |

cons- NO 10.93 10.48 10.52

PSM tant Eq. (6) 10.19 9.50 9.54

Eq. (5) 11.61 10.93 11.05

li- NO 10.89 10.27 10.40

PSM ne- Eq. (6) 10.05 9.31 9.40

ar Eq. (5) 11.61 10.94 11.04

quad- NO 10.93 10.18 10.28

PSM ra- Eq. (6) 10.00 9.31 9.89

tic Eq. (5) 11.58 10.76 10.84

Table 3. E�ect of the length of acoustic context on

speaker-independent phoneme classi�cation error rates

(%). Cepstrum, � and �� cepstrum. Quadratic vari-

ance polynom. Acoustic context was taken into account

using Eq. (6).

Model Observation Duration Model

type context size NO DN

0 ms 10.93 10.18

CD 10 ms 10.26 9.63

20 ms 10.00 9.31

30 ms 9.84 9.16

PSM 40 ms 10.09 9.60

50 ms 10.70 10.09

Table 4. Speaker-independent phoneme classi�cation er-

ror rates (%). All the models were triphone models. 39

dimensional feature vectors (cepstrum, � and �� cep-

strum). The variance polynom was quadratic. The PSMs

used a normal duration distribution.

Model Obs. Parameters

type ctxt. static static+�+��

HMM NO 15.47 13.57

PSM NO 11.48 10.18

PSM Eq. (6) 10.67 9.31


