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particular if the system uses context dependent phone
ABSTRACT recognisers. In addition, large amounts of text are required to

) o o _train language models of word n-grams.
Current language identification systems vary significantly in

their complexity. The systems that use higher level linguistid particularly successful approach is parallel language
information have the best performance. Nevertheless, thdgpendent phone recognition followed by language modelling
information is hard to collect for each newndmage. The [10][11]. This type of approach exploits the phonotactic
system presented in this paper is easily extendable to newperties of the languages, and does not need to recognise
languages écause it uses very littlenjuistic information. In words. The recognition and language modelling are done at the
fact, the presented system needs only one language spegifione level. This approach is able to achieve identification rates
phone recogniser (in our case the Portuguese one), andinsexcess of 80%, using 10-second utterances in 6 languages
trained with speech from each of the otheglaages. [10]. The biggest drawback is the requirement of labelled

With the S hDat-M ih 6 E = speech for a large subset of thegaages used. As it is based
it .t e SpeechDat- corpus, wit uropeangizages -, multiple language-specific phone recognisers, it requires
(English, French, German, Italian, Portuguese and Spanish) Whelled speech to train thoseagaisers

system achieved an identification rate of 83.4% on 5-secon
utterances, this result shows an improvement of 5% over oliris possible to obtain the same level of identification using
previous version, mainly through the use of a neural networnly one set of language independent phone recognisers [4]. By
classifier. Both the baseline and the full system werperforming multiple recognitions of the input utterance by the

implemented in realtime. same models, and constraining eaclogedion by a different
phone-bigram grammar (obtained from manually labelled
1. INTRODUCTION transcriptions), Navratil obtained multiple phone streams of the

_— . I same utterance. Those streams were then fed to stream-specific
When designing a language identification system, aee the language models. The likelihood ofach laguage was

problem of scalability. In order to cover a significant amount O(Eetermined by a weighted combination of the likelihoods of the
the thousands of Ianguaggs commonly spoken, one I%guages ineach stream. Nevertheless, this system still
confronted with two problems: on one hand the problem c}Equires labelled speech in eachdaage to model the language

ldewsmg 6,‘ systﬁm efficient inpugh to :e agle tc|)q |dentg|y tf‘lﬁdependent subword units. In addition, it requires textual data
anguagein as ort ampunto time; ont.e other, the problem gi pronunciation dictionaries to create the phone-bigram
collecting the information needed to train such a system. T@?ammars

collection of speech data is, in itself, a hardbwgh problem.

Techniques that require hand labelling of the speech materidle continue in Section 2 by describing the SPEECHDAT

and other linguistic data are very hard to extend beyond tlterpus, and the separation of training and test sets. In Section 3,

most common languages. we describe a baseline system, and, in Section 4, the full system
. . with multiple decoders and a neural net classifier. In Section 5,

In this paper, we present a system with state of the present the realtime implementation of the systems. In

performgnce, that u;es a minimum amount of IIr'gu'sméection 6, we show the results attained with both systems.
information and requires only speech data to be extended Iéfhally, concluding remarks and plans for future work are
new languages. By contrast, the best systems reported in H}gsented in Section 7

literature make heavy use of linguistic data.

The best systems use multiple large vocabulary continuous

speech remgnisers [2][8]. These systems include a complete 2. TRAINING AND TEST CORPUS

word recogniser foeach laguage, and use word and sentence

level language modelling. Due to the difficulty of adding a newe used the SPEECHDAT corpus [9] to investigate the
language, those systems are generally limited to a very small gasblem of automatic identification of European languages.
of languages. In order to build such a system, one requiresThis corpus was collected through the public telephone network
large amount of labelled epch to trairphone recognisers, in and includes utterances from about one thousand speakers from



each of seven Europeanuntries. The collected languages arecepstral coefficients, energy and delta energy. In the cepstral
English, French, German, Italian, Portuguese, Spanish, aadalysis 10ms frames and 25ms Hamming windows were used.
Swiss French. In this work, we used only the first six languageBlean cepstral removal was performed to reduce the channel

effect.
We selected nine utterances from each speaker in ezglalge

from the set of phonetically rich sentences included in thg_z_ Phone Recogniser

corpus. The utterances in this set are read sentences with an

average length of 5 seconds. They were randomly separated int@ontinuous mixture HMM based phone recogniser decoded
training and evaluation sets. To guarantee that there was th@ incoming spoken utterance. This recogniser had male and
speaker or sentence overlap between the train and test set f§pnale models of each of the 38 Rgiese phones and 2 non-
example, a test speaker reading a sentence user for training),sgeech units (silence and pause), totalling 78 different subword
were forced to reject a significant amount of data, as illustrateghits. The models had the conventional three-state left-to-right
in figure 1. architecture shown on figure 3. When tested with the
Portuguese test set, the recogniser achieved 54.1% phone

A "
recognition correctness.
70% | rejected Train
sentences
Figure 3: Three-state left-to-right HMM architecture.
30% | Test '
rejected 3.3. Language Models
|-
30% 70% o The decoded sequence was stripped of the sex information and
speakers was fed to a set of phone-bigram language models (see figure
2). The language models were based on interpolated phone-
Figure 1: lllustration of rejected material. bigram probabilities. Let A = a,a,,-,a be one

sequence of phones. The likelihood feach laguage was
computed as:

3. BASELINE SYSTEM
1

T
Our baseline system used the classic language dependent phbk@ | LM )= T E"g Pa | LM") + Z logP(a | &, LM I)E
recognition followed by language modelling (PRLM) = _
architecture [11]. In this architecture, the sequence of phongsere LM ' is the language model of languabeand P is
decoded by the recogniser is matched against a set of phofifs interpolated bigram model:

bigram language models, one fmach laguage. The output of

each model is the likélbod of the sequence in its language. P(a |a,,) =aP(a |a.,) + BP(a,)
0<a,B<1 a+p=1
] where and ,B are empirical weights.
The identified language was selected using a maximum-
Utterance likelihood classifier:
4>
I = argmaxL(A| LM .
Phone o . . .
Recognizer ~ Language Models Max Likelihood 3.4. Linguistic Information
Classifier
The only linguistic information used was the one required to
Figure 2: Baseline system architecture. train the acoustic models: the orthographic transcription of the
Portuguese utterances and a corresponding pronunciation
dictionary.

3.1. Parameter Extraction

From the train and test utterances we extracted vectors
composed of 12 Mel-frequency cepstral coefficients, 12 delta-



4. FULL SYSTEM 5. ONLINE SYSTEM

The best phonotactic language identification systems report@&tie online language identification system uses a distributed
in the literature, like [10] and [4], combine in their architecturarchitecture, it consists of one client module, and one or more
multiple simple modules similar to our baseline system. In ordésinguage identification servers. The client controls a voice
to achieve state of the art performance, we decided to use aquisition board and runs on a Windows 95 PC The servers
architecture similar to [4]. In this architecture, the output of thdecode the acquired speech iptmone sequences, and perform
phone recogniser consists of multiple phone sequereed, the language identification task. Language identification using
resulting of the Viterbi decoding constrained by a particular seinly one phone recogniser (our baseline system) runs at
of language-specific transition probabilities. To avoidapproximately real time (a 16s utterance takes 15s to be
Navratil's requirement of original-label transcriptions, thoselecoded) on a Linux PC with a Pentium Il processor at
probabilities were calculated by a bootstrapping process. Fir8Q0Mhz. The full system is implemented with one server
the training data was decoded using a null-grammaerving as a controller which interfaces with the client
constraining the utterances only to male or female phorapplication and the other servers performing the multiple phone
models. The decoded phone sequences were then usedremognitions, one server for eachdaage.

determine each tyuage phone-bigram probabilities.

6. RESULTS
The system was tested using a closed set of six European
languages. Table 1 shows the identification rates of the baseline
Phone Bigrams system.
Global DE EN ES FR IT PT
71.4% 70.3% 77.4% 66.3% 71.0% 65.2% 88.3%
Table 1:Baseline system identification results.
Utterance
4>
Portuguese is, naturally, the best identified languageause
the acoustic models were trained only with Portuguesectp
Phone
Recogniser  Stream Specific MLP The results achieved with the full system are shown on table 2.
Language Models Classifier
DE EN ES FR IT PT
Figure 4: Full system architecture. DE (83.9% 91% 13% 39% 10% 0.9%

EN | 12.0% 818% 16% 20% 1.7% 0.9%
ES 1.1% 1.0% 845% 2.0% 6.6% 4.7%
The language models were similar to the ones used in the FR 38% 2.0% 3.8% 86.6% 3.4% 0.5%
baseline system. But now, instead B{number of languages) IT 48% 2.9% 14.0% 6.4% 70.4% 1.5%
PT 1.1% 04% 52% 0.8% 0.0% 92.5%
Total | 83.4%)|

models, we havdl" — a set of for each decoded sequence.

4.1. Neural Network Classifier

In [1] we determined eachriguage score as the sum of itsTable 2: Final system identification confusion table.

sequence specific likelihoods, and selected the identifiethe global results cannot be directly compared with published
language using a maximum-likelihood classifier. results using other databases because of tigudme choices

. . .. .. _and utterance lengths. Nevertheless, our results are close to
There are several reports in the literature [10][5] which |nd|(:att ose reported for 6-lanquage tasks. with 10s utterances. usin
that this selection technique is not the best approach and th P guag ' ' 9

a . L :
neural network classifier is able to achieve better results. % € NIST test .SEt' This system shows a significant improvement
over the baseline system.

In order to improve the system, we used a multilay
perceptron (MLP) classifier which takes as input the output

the 36 language models, has 100 hidden units and 6 outp ; .
. . . i % of the English utterances were mistaken as German, and
The output with the highest value identifies the language. This .
: . . .1% of German as English). As far as romance languages are
perceptron was trained using backpropagation and the metho& . . .
of adaptive step sizes [6][7] concerned, we see that Spanish and ltalian were also easily
p P ' mistaken with each other (6.6% and 14%). Theugorese and
The global identification results improved from 78.7% toFrench results are harder to interpret. The confusion rates
83.4%. between these languages and the others were not significant and
stable enough for us to claim any particular proximity. In this
table, Portuguese shows some proximity with Spanish, yet this
proximity was seldom revealed during development. The

he proximity between some languages can be clearly seen:
ermanic languages were most often confused eatth other



French language is one of the romance languages with more
Germanic influence, which might explain why it does not show
any significant confusion trend.

With the purpose of investigating the effect of utterance
duration on system performance, we ranked all the utterances
by duration and performed separate tests with the utterances in
each 1-seund interval.
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Figure 5: Evolution of the identification rate with utterance
duration.

The results are shown on figure 5. As expected, the
identification rate increases with the duration of the utterances.
From 8 seconds onwards, the results were erratic due to the low
number of utterances in each interval. The best significative
result was 86.1% with utterances of 7 to 8 seconds duration.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we described a method for automatic language
identification that uses little linguistic information. In order to
extend this system to new languages, onBesp data in these
languages is required. This method was implemented in an
interactive realtime language identification system.

Our results showed that linguistic proximity between languages
can degrade the performance of automatic language
identification systems. That proximity indicates that when
speech data from more niguages becomes available,
hierarchical systems, which identify first the group of languages
and then the language within the group, may be feasible.
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