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ABSTRACT

Current language identification systems vary significantly in
their complexity. The systems that use higher level linguistic
information have the best performance. Nevertheless, that
information is hard to collect for each new language. The
system presented in this paper is easily extendable to new
languages because it uses very little linguistic information. In
fact, the presented system needs only one language specific
phone recogniser (in our case the Portuguese one), and is
trained with speech from each of the other languages.

With the SpeechDat-M corpus, with 6 European languages
(English, French, German, Italian, Portuguese and Spanish) our
system achieved an identification rate of 83.4% on 5-second
utterances, this result shows an improvement of 5% over our
previous version, mainly through the use of  a neural network
classifier. Both the baseline and the full system were
implemented in realtime.

1. INTRODUCTION

When designing a language identification system, we face the
problem of scalability. In order  to cover a significant amount of
the thousands of languages commonly spoken, one is
confronted with two problems: on one hand the problem of
devising a system efficient enough to be able to identify the
language in a short amount of time; on the other, the problem of
collecting the information needed to train such a system. The
collection of speech data is, in itself, a hard enough problem.
Techniques that require hand labelling of the speech material
and other linguistic data are very hard to extend beyond the
most common languages.

In this paper, we present a system with state of the art
performance, that uses a minimum amount of linguistic
information and requires only speech data to be extended to
new languages. By contrast, the best systems reported in the
literature make heavy use of linguistic data.

The best systems use multiple large vocabulary continuous
speech recognisers [2][8]. These systems include a complete
word recogniser for each language, and use word and sentence
level language modelling. Due to the difficulty of adding a new
language, those systems are generally limited to a very small set
of languages. In order to build such a system, one requires a
large amount of labelled speech to train phone recognisers, in

particular if the system uses context dependent phone
recognisers. In addition, large amounts of text are required to
train language models of word n-grams.

A particularly successful approach is parallel language
dependent phone recognition followed by language modelling
[10][11]. This type of approach exploits the phonotactic
properties of the languages, and does not need to recognise
words. The recognition and language modelling are done at the
phone level. This approach is able to achieve identification rates
in excess of 80%, using 10-second utterances in 6 languages
[10]. The biggest drawback is the requirement of labelled
speech for a large subset of the languages used. As it is based
on multiple language-specific phone recognisers, it requires
labelled speech to train those recognisers.

It is possible to obtain the same level of identification using
only one set of language independent phone recognisers [4]. By
performing multiple recognitions of the input utterance by the
same models, and constraining each recognition by a different
phone-bigram grammar (obtained from manually labelled
transcriptions), Navrátil obtained multiple phone streams of the
same utterance. Those streams were then fed to stream-specific
language models. The likelihood of each language was
determined by a weighted combination of the likelihoods of the
languages in each stream. Nevertheless, this system still
requires labelled speech in each language to model the language
independent subword units. In addition, it requires textual data
and pronunciation dictionaries to create the phone-bigram
grammars.

We continue in Section 2 by describing the SPEECHDAT
corpus, and the separation of training and test sets. In Section 3,
we describe a baseline system, and, in Section 4, the full system
with multiple decoders and a neural net classifier. In Section 5,
we present the realtime implementation of the systems. In
Section 6, we show the results attained with both systems.
Finally, concluding remarks and plans for future work are
presented in Section 7.

2. TRAINING AND TEST CORPUS

We used the SPEECHDAT corpus [9] to investigate the
problem of automatic identification of European languages.
This corpus was collected through the public telephone network
and includes utterances from about one thousand speakers from



each of seven European countries. The collected languages are
English, French, German, Italian, Portuguese, Spanish, and
Swiss French. In this work, we used only the first six languages.

We selected nine utterances from each speaker in each language
from the set of phonetically rich sentences included in the
corpus. The utterances in this set are read sentences with an
average length of 5 seconds. They were randomly separated into
training and evaluation sets. To guarantee that there was no
speaker or sentence overlap between the train and test set (for
example, a test speaker reading a sentence user for training), we
were forced to reject a significant amount of data, as illustrated
in figure 1.

7HVW

7UDLQ

3 0 %

3 0 %

7 0 %

7 0 %

speakers

sentences

rejected

rejected

Figure 1: Illustration of rejected material.

3. BASELINE SYSTEM

Our baseline system used the classic language dependent phone
recognition followed by language modelling (PRLM)
architecture [11]. In this architecture, the sequence of phones
decoded by the recogniser is matched against a set of phone-
bigram language models, one for each language. The output of
each model is the likelihood of the sequence in its language.
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Figure 2: Baseline system architecture.

3.1. Parameter Extraction

From the train and test utterances we extracted vectors
composed of 12 Mel-frequency cepstral coefficients, 12 delta-

cepstral coefficients, energy and delta energy. In the cepstral
analysis 10ms frames and 25ms Hamming windows were used.
Mean cepstral removal was performed to reduce the channel
effect.

3.2. Phone Recogniser

A continuous mixture HMM based phone recogniser decoded
the incoming spoken utterance. This recogniser had male and
female models of each of the 38 Portuguese phones and 2 non-
speech units (silence and pause), totalling 78 different subword
units. The models had the conventional three-state left-to-right
architecture shown on figure 3. When tested with the
Portuguese test set, the recogniser achieved 54.1% phone
recognition correctness.

Figure 3: Three-state left-to-right HMM architecture.

3.3. Language Models

The decoded sequence was stripped of the sex information and
was fed to a set of phone-bigram language models (see figure
2).  The language models were based on interpolated phone-

bigram probabilities. Let TaaaA ,,, 21 �=  be one

sequence of phones. The likelihood for each language was
computed as:
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where α  and β  are empirical weights.

The identified language was selected using a maximum-
likelihood classifier:
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3.4. Linguistic Information

The only linguistic information used was the one required to
train the acoustic models: the orthographic transcription of the
Portuguese utterances and a corresponding pronunciation
dictionary.



4. FULL SYSTEM

The best phonotactic language identification systems reported
in the literature, like [10] and [4], combine in their architecture
multiple simple modules similar to our baseline system. In order
to achieve state of the art performance, we decided to use an
architecture similar to [4]. In this architecture, the output of the
phone recogniser consists of multiple phone sequences, each
resulting of the Viterbi decoding constrained by a particular set
of language-specific transition probabilities.  To avoid
Navrátil’s requirement of original-label transcriptions, those
probabilities were calculated by a bootstrapping process. First,
the training data was decoded using a null-grammar
constraining the utterances only to male or female phone
models. The decoded phone sequences were then used to
determine each language phone-bigram probabilities.
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Figure 4: Full system architecture.

The language models were similar to the ones used in the
baseline system. But now, instead of n (number of languages)

models, we have 
nn – a set of n  for each decoded sequence.

4.1. Neural Network Classifier

In [1] we determined each language score as the sum of its
sequence specific likelihoods, and selected the identified
language using a maximum-likelihood classifier.

There are several reports in the literature [10][5] which indicate
that this selection technique is not the best approach and that a
neural network classifier is able to achieve better results.

In order to improve the system, we used a  multilayer
perceptron (MLP) classifier which takes as input the output of
the 36 language models, has 100 hidden units and 6 outputs.
The output with the highest value identifies the language. This
perceptron was trained using backpropagation and the method
of adaptive step sizes [6][7].

The global identification results improved from 78.7% to
83.4%.

5. ONLINE SYSTEM

The online language identification system uses a distributed
architecture, it consists of one client module, and one or more
language identification servers. The client controls a voice
acquisition board and runs on a Windows 95 PC The servers
decode the acquired speech into phone sequences, and perform
the language identification task. Language identification using
only one phone recogniser (our baseline system) runs at
approximately real time (a 16s utterance takes 15s to be
decoded) on a Linux PC with a Pentium II processor at
300Mhz. The full system is implemented with one server
serving as a controller which interfaces with the client
application and the other servers performing the multiple phone
recognitions, one server for each language.

6. RESULTS

The system was tested using a closed set of six European
languages. Table 1 shows the identification rates of the baseline
system.

Global DE EN ES FR IT PT
71.4% 70.3% 77.4% 66.3% 71.0% 65.2% 88.3%

 Table 1: Baseline system identification results.

Portuguese is, naturally, the best identified language, because
the acoustic models were trained only with Portuguese speech.

The results achieved with the full system are shown on table 2.

DE EN ES FR IT PT
DE 83.9% 9.1% 1.3% 3.9% 1.0% 0.9%
EN 12.0% 81.8% 1.6% 2.0% 1.7% 0.9%
ES 1.1% 1.0% 84.5% 2.0% 6.6% 4.7%
FR 3.8% 2.0% 3.8% 86.6% 3.4% 0.5%
IT 4.8% 2.9% 14.0% 6.4% 70.4% 1.5%
PT 1.1% 0.4% 5.2% 0.8% 0.0% 92.5%

Total 83.4%

Table 2: Final system identification confusion table.

The global results cannot be directly compared with published
results using other databases because of the language choices
and utterance lengths. Nevertheless, our results are close to
those reported for 6-language tasks, with 10s utterances, using
the NIST test set. This system shows a significant improvement
over the baseline system.

The proximity between some languages can be clearly seen:
Germanic languages were most often confused with each other
(12% of the English utterances were mistaken as German, and
9.1% of German as English). As far as romance languages are
concerned, we see that Spanish and Italian were also easily
mistaken with each other (6.6% and 14%).  The Portuguese and
French results are harder to interpret. The confusion rates
between these languages and the others were not significant and
stable enough for us to claim any particular proximity. In this
table, Portuguese shows some proximity with Spanish, yet this
proximity was seldom revealed during development. The



French language is one of the romance languages with more
Germanic influence, which might explain why it does not show
any significant confusion trend.

With the purpose of investigating the effect of utterance
duration on system performance, we ranked all the utterances
by duration and performed separate tests with the utterances in
each 1-second interval.
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 Figure 5: Evolution of the identification rate with utterance
duration.

The results are shown on figure 5. As expected, the
identification rate increases with the duration of the utterances.
From 8 seconds onwards, the results were erratic due to the low
number of utterances in each interval. The best significative
result was 86.1% with utterances of 7 to 8 seconds duration.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we described a method for automatic language
identification that uses little linguistic information. In order to
extend this system to new languages, only speech data in these
languages is required. This method was implemented in an
interactive realtime language identification system.

Our results showed that linguistic proximity between languages
can degrade the performance of automatic language
identification systems. That proximity indicates that when
speech data from more languages becomes available,
hierarchical systems, which identify first the group of languages
and then the language within the group, may be feasible.
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