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ABSTRACT These may be more applicable when the enhancement system is
used as a front end to a recognition system. The incorporation of

We have previously developed a speech enhancement schepir information in the form of trained clean speech models is
which can adapt to unknown additive noise. We model spee@hother advantage of this technique.

and noise using perceptual frequency or ‘warped’ autoregressive
HMMs (AR-HMMs) and estimate the clean speech and noise paA/e have previously presented two extensions to the work in [1].
rameters within this framework. In this current work, we inves-n the original system, the noise models were trained on given
tigate the use of our system as a front end to a MFCC recogxamples. In [3], we show that maximum likelihood (ML) esti-
nition system trained on clean speech. To use our system amtes can instead be made of the noise statistics. It is possible to
a front end, we make two modifications. First, we use miniuse ML parameter estimation in the AR-HMM domain to adapt to
mum mean squared error (MMSE) spectral rather than time dadditive noise because AR-HMMs model features which are ad-
main estimators for enhancement. Second, for computational reditive. This is more difficult if for example cepstral-based HMMs
sons, we form estimators from non-warped AR-HMMs. To avoidare used.
mismatch introduced when converting between warped and non-
warped models, we use parallel sets of models. In later work [4], we show that the modelling power of AR-
HMMs is improved by the incorporation of perceptual frequency.
Results are presented for small and medium vocabulary tasks. Glere, the bilinear transform is used to produce autocorrelation
the simple task, we are able to approach the performance ofcaefficients on a warped frequency scale which is a good approxi-
matched system when language model information is includedhation to the perceptually meaningful Bark scale. These autocor-
On the second task, we are not able to incorporate a languaggation coefficients are then used to construct warped AR-HMMs
model due to modelling deficiencies in AR-HMMs. However, wewhich are shown to give superior recognition performance to non-
still demonstrate substantial improvements over baseline resulteiarped models.

1. INTRODUCTION To date we have only presented limited evaluations of our sys-

tem. In this current work we present substantial qualitative sup-

Speech processing systems can suffer unacceptable performaneg for our technique by investigating its potential as a front end

degradation in the presence of background noise. In this papé®, recognition systems trained on clean speech. Some modifica-

we consider the effect of additive noise on clean speech recogriions to our previous algorithm are needed and are described in

tion systems and use speech enhancement as a front end to fhe following section.

prove their performance. In particular, we are interested in the

case where the noise statistics are unknown. Recent approaches 2. THE ENHANCEMENT SYSTEM

to adaptive speech enhancement are summarised in [2]. Many of

the techniques use Kalman filters. Our enhancement system models speech and noise using warped
AR-HMMs. Within this framework, the noise statistics are deter-

We base our system on work by Ephraim [1]. This techmined and estimators formed for enhancement.

nigue models speech and noise using autoregressive HMMs (AR-

HMMs) and uses these to form a compensated model. This corRreviously, we studied Wiener filter estimators. These give the

pensated model is used to determine the probability of each coMfMSE time domain estimate of the clean speech. Several other

pensated state given the noisy observation. These probabiliti@gtimators are proposed in [1] however.

are then used to weight estimators of the clean speech given thath. ) )
state. The extension to multiple mixture systems is straightfof! (NS Work, we derive enhanced MFCC parameters directly from
ward. the enhanced spectra rather than from an enhanced wave resyn-

thesised in the time domain. We thus found improved perfor-
The basic technique uses Wiener filter estimators which haygance when we used the MMSE power spectral density (PSD)
been shown to be inferior to Kalman filters [5]. However, itestimator described in [1] since errors in the spectral domain more
is possible to use other estimators within the same frameworgtrongly influence the enhanced cepstral features. This estimator



was therefore used for all the experiments described here. We study enhancement systems based on two types of clean
speech models: word-based models and general models. We

A further modification to our previous system is to decouple thenodel the noise using a single state AR-HMM with autoregres-

processes of calculating the posterior probability from the prosive order 20. This model is initialised by assuming the whole

cess of applying the estimators. As described, we use warpeggterance is noise.

AR-HMNMs for probability calculations since these are better at

modelling speech [4]. However, for computational reasons, itig 1,  Clean Speech Models

desirable to use non-warped AR-HMMs to form the estimators

for enhancement. The clean speech MFCC HMM recognition system contains an
8-emitting state left-to-right HMM model for each digit and a

We must therefore convert between estimators in the warped aRthmtting state model for silence. The MFCC feature vectors

non-warped domains. Itis possible to unwarp the estimators fqnain 15 cepstral coefficients including the zeroth coefficient.

enhancement directly. However, there is mismatch introduced lﬂiagonal covariance matrices are used.

the unwarping process [8].

) S The standard Baum-Welsh algorithm is used for training. Con-
Since in this work we use our system as a front end to & staacied word Viterbi decoding is used for recognition (i.e. not iso-
dard recognition system, we wish to minimise this mismatch. Weyieq word recognition). The syntax for the recognition network

achieve this by training warped and non-warped models in pargk constrained to be a string of digits each followed by silence.
lel and using the warped models to calculate probabilities and the

non-warped models to form estimators. The system is shown iWe also construct warped and non-warped AR-HMM clean

Figure 1. speech recognition systems. These are needed for the word-based
enhancement system and for baseline experiments. These have
Warped com Warped the same topology as the MFCC models except there are 2 mix-
pensated ; .
specch —— Warped models ‘ Noise ture components per state. The order of the autoregressive models
* is 20.
o Probability of All the recognition and enhancement systems use frames of 32ms
o esﬁg[‘ecg"i\’}‘e%"fﬁge with overlap of 16ms. These parameters are chosen to be conve-
noisy speech nient for construction of enhanced time domain waveforms (used
(—Wa—)rp for perceptual evaluations not discussed here).
y 3.2. Baseline Performance
Noisy o Weighted sum Enhanced
Speech = of estimators —® Speech The results in this section are the best results achievable for clean
\ and matched systems. They are obtained by optimising the inser-
tion penalty and another parameter, the silence probability incre-
Soeech estimators Noi ment, for each test condition. This latter parameter, described in
Vodaie ™ for each composite | ® yo2S [7], weights the log observation probability of the silence model
state by a fixed value to improve the chance of low energy frames at

word boundaries being recognised correctly as silence.

Figure 1: A perceptual frequency enhancement system. Th&able 1 shows the summary recognition error rates for speech
weights for each estimator are determined using warped ARorrupted by each of the four noise sources and tested with clean
HMMs. The estimators are formed using non-warped ARand matched MFCC models. The matched systems are obtained
HMMs. using single pass retraining. In this and subsequent tables, we
show the average word error rates for the four noise sources at
The clean speech non-warped models are trained using singlgch SNRD, S andI are the total number of deletion, insertion
pass retraining. This technique generates a parallel set of moghg substitution errors respectively. We see that the performance
els by computing the state probabilities using one set of models the clean models degrades rapidly with decreasing SNR.
and training data, and then switching to different training data
to compute parameter estimates for a second model. The noif&ble 2 summarises the word error rates for the compensated non-
statistics are estimated in both the warped and non-warped dearped and warped AR systems. The compensated models are
mains in order to implement the adaptive enhancement systemformed using trained noise models. They are thus the best com-
pensated models available to calculate the probabilities required
3. SMALL VOCABULARY SPEAKER for enhancement. We see that the warped AR-HMM system has
DEPENDENT EXPERIMENTS superior performance. Thus the remainder of this paper will focus

on enhancement systems based on warped AR-HMMs.
The first set of experiments use the NOISEX-92 database [9]. We
study the male isolated digits task corrupted by the following four
stationary noise sources: Lynx helicopter noise, speech noise, car
noise and F16 aircraft noise.



SNR % Error (D,S,1) 3.4. General Models
(dB) Clean | Matched
oo | 0.00 (0,0,0) 0.00 (0,0,0) We now investigate the effect of removing the language model
18 | 5450 (57,97,64)| 0.00 (0,0,0) information from the enhancement system. We model the clean
12 | 77.00 (88,160,60) 0.00 (0,0,0) speech and silence using a two-state ergodic HMM. The first
6 | 92.00 (300,0,0) | 0.25 (0,1,0) state models speech using 128 mixture components and the sec-
0| 95.00 (380,0,0) | 250 (0,10,0) ond state models silence using a single mixture component. For
-6 | 95.00 (380,0,0) | 32.50 (37,81,12) this system, the forward-backward equations are used instead of

Viterbi alignment to calculate the likelihood of each mixture com-
Table 1: Word error rates for speech corrupted by the four noiseBonent of the compensated model.

and recognised using clean and matched MFCC models. ) )
The second column of Table 3 summarises the results for this sys-

tem. These results are inferior to the word-based system despite
having a comparable number of mixture components. Thus we

SNR % Error (D,S,I) conclude that some performance is sacrificed by the use of sim-
(dB) AR Models | Warped AR Models pler models.
18] 1.00 (04,00 | 000 (0,0,0)
12| 325 (0,13,0) | 0.00  (0,0,0) 4, MEDIUM VOCABULARY SPEAKER
6| 8.00 (3,29,0) 0.75 (0,3,0) INDEPENDENT EXPERIMENTS
0| 225 (13,67,10)| 4.75  (2,17,0)
-6 | 38.75 (30,100,25) 20.75 (14,57,12) In this section, we investigate the performance of our algorithm

_ _on the more challenging Resource Management (RM) task [6].
Table 2: Word error rates for corrupted speech recognised usingince the RM database contains clean speech only, Lynx noise
compensated AR models. from the NOISEX-92 database was added to the test sets at 18dB
and 12dB.

In [4], we found that on the speaker dependent RM task, the per-
3.3. Word-Based Models formance of a clean speech AR-HMM system was worse than a
standard MFCC system. This was because currently AR-HMM

The first set of enhancement experiments investigates systems Y%stems cannot incorporate delta features and because the MECC
ing word-based HMMs. For these experiments, Viterbi alignmergﬁstem uses a superior distortion measure.

is used to obtain the most likely speech and noise state for eac

frame given the noisy observation. The most likely mixture comThe speaker independent task is significantly harder. Typically,

ponent given this state is then determined. The speech and nois& necessary to incorporate acceleration features in addition to

statistics for this mixture component are then used to to reestimagielta features. We were therefore unable to construct a clean AR-

the noise parameters and to construct estimators for enhancemesitiM medium vocabulary speaker independent recognition sys-
tem with acceptable performance. This implied that we could not

We found that the optimal insertion penalty used during Viterbjncorporate language model information into our enhancement
alignment varied according to the SNR. In order to automaticallyystem.

choose this parameter, the NIST teedvmdwas used to approx-
imate the SNR for each test file. This was then mapped to anherefore a scheme based on general speech models is studied.
insertion penalty. A similar non-adaptive enhancement system based on compen-

) ) sated MFCC models without delta parameters has been shown to
The first column of Table 3 summarises the enhancement resuﬂérform well on this task [7].

obtained using this scheme. We see that substantial improve-

ments have been made over baseline results and that the enpPr . Clean Recognition Systems
rates are comparable to the matched model results in Table 1.

The enhanced MFCC parameters are evaluated using a clean
speech recognition system as before. This is trained using the

SNR % Error (D,S,1) RM Toolkit [10] as a template. The system models 3-state left-
(dB) Word Models | General Models to-right clustered triphones with 5 mixture components per state.
18 0.00 (0,0,0) 2.50 (3,6,1) The feature vectors contain 13 cepstral coefficients including the
12 0.00 (0,0,0) | 1575  (16,44,3) zeroth coefficient augmented with delta and acceleration coeffi-
6 0.50 (0,2,0) | 51.50 (93,103,10) cients. These are modelled using diagonal covariance matrices.
0 6.25 (1,14,10) | 78.75 (274,410 The data is pre-emphasised by the filigfz) = 1 — 0.97z L.
6 | 2650 (30,53,23) 85.75 (332,11,0)

The frame rate and frame size are 16ms and 32ms respectively as
Table 3: Word error rates for corrupted speech enhanced adapsed as in the previous experiments. These differ from the stan-
tively. The general models contain 128 mixture components idard parameters used in the RM Toolkit. The non-standard frame
the speech state. rate affects the modelling of short phones by increasing the min-

imum duration. This problem is alleviated by the introduction of



Model | SNR % Error speech to improve recognition performance in the presence of un-
(dB) | Feb89] Oct89 | Feb91l| Sep92| Avg. known noise.
Clean ) 6.3 7.3 5.9 11.0 7.6
18 389 | 304 | 358 | 431 | 37.0 We quified our existing system in two ways to use it as a front
12 | 804 | 810 | 777 | 8.2 | 811 end. First, we form MMSE spectral estimates rather than MMSE
Matched 18 167 148 141 510 | 167 waveform estimates of the enhanced wave. Second, although
1 708 313 370 702 366 we use perceptual frequency or warped AR-HMMs to model the
speech, we use a parallel set of non-warped models to form es-
Table 4: Baseline results for the RM database speaker indepeHmators' This minimises the mismatch between the enhanced
dent test sets for clean speech and speech corrupted using Lﬁ%pstral parameters and the clean speech model.

noise. Performance using clean and matched models is showng ¢ resuits are encouraging. On the small vocabulary

speaker
dependent task, we were able to approach the performance of a
matched model when a language model was used. We were how-
SNR | Nr. % Error ever unable to use a language model on the medium vocabulary,
(dB) | Mixes | Feb89] Oct89 [ Feb91]| Sep92]| Avg. speaker independent task because currently AR-HMMs do not in-
18 128 23.6 20.1 21.7 276 | 23.2 corporate delta parameters. Despite this, we were still able to sub-
256 18.7 16.5 18.9 239 | 195 stantially reduce the error rate compared to unprocessed speech.

512 18.1 155 18.1 242 | 19.0
[ 12 | 512 | 428 | 357 | 379 | 46.7 | 408] 6. REFERENCES

Table 5: Enhancement results for the RM speaker independenll' Y. Ephraim. A'Baye_3|an estimation approach for speech en-
test sets for Lynx noise. The speech is enhanced using general Na@ncement using hidden Markov modeli=EE Trans. on
speech models with varying numbers of mixture components. Signal Processingd0(4):725-735, April 1992.
2. S. Gannot, D. Burshtein, and E. Weinstein. Iterative and
sequential Kalman filter-based speech enhancement algo-

i . h trioh del. The f | ff rithms. |EEE Trans. on Speech and Audio Processing
a skip state into each triphone model. The frame rate also affects 6(4):373-385, July 1998.

the period of time used to calculate the delta and acceleration co-

efficients. This effect was not considered. 3. B.T. Logan and A. J. Robinson. Enhancement and recogni-
tion of noisy speech within an autoregressive hidden Markov
4.2. Baseline Performance model framework using noise estimates from the noisy sig-

nal. InProc. ICASSPpages 843-846, 1997.
Table 4 shows the word error rates for the clean and noisy speech B, T. Logan and A. J. Robinson. Improving autoregres-

on the four test sets. The clean baseline is worse than the pub- sjye hidden Markov model recognition accuracy using a non-
lished performance on this database because of the decreased |inear frequency scale with application to speech enhance-

frame rate as discussed. We see that the addition of noise has ment. InProc. EUROSPEECHages 2103-2106, Septem-
a substantial effect on the error rate. Also in this table are the per 1997.

word error rates for a matched system. .
y 5. K. K. Paliwal and A. Basu. A speech enhancement method

based on Kalman filtering. IRroc. ICASSPpages 6.3.1-
6.3.4, 1987.

We first investigate the 18dB noise condition. Table 5 shows the6. P. Price, W. M. Fisher, J. Bernstein, and D. S. Pallett. The

word error rates for various numbers of mixture components in  DARPA 1000-word Resource Management database for con-

the models. We see that a substantial improvement has been made tinuous speech recognition. Rroc. ICASSP1988.

on the basel?ne performance. The performance improvgs as thg_ C. W. Seymour.Model-Based Speech EnhancemeRhD

number of mixture c_omponents increases although t_he dlffe_rer_lc_e thesis, Univeristy of Cambridge, 1996.

between the 512-mixture and 256-mixture systems is not signifi-

cant. The last row of this table shows the error rate for the 512-8. H. W. Strube. Linear prediction on a warped frequency scale.

mixture system at 12dB. Again substantial improvements have J- Acoust. Soc. An68(4):1071-1076, October 1980.

been made over the baseline performance. 9. A.P.Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones.
The noisex-92 study on the effect of additive noise on au-

From these two test conditions, it appears that the improvement ;4 matic speech recognition. Technical report, DRA Speech
gained by the enhancement technique halves the error rate. HOW- Ragearch Unit. 1992.

ever this performance is significantly worse than the matched

model results suggesting that there is a modelling deficiency. 10- S-J. Young, P. C. Woodland, and W. J. ByriéTK: Hid-
den Markov Model Toolkit V1.5Cambridge University En-

5. CONCLUSIONS gineering Department Speech Group and Entropic Research
) Laboratories Inc., September 1993.

4.3. Enhancement Performance

We have shown that the enhancement system developed in in [3]
and [4] can be used as a front end to a recogniser trained on clean



