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ABSTRACT elements in the covariance matrices. The algorithm we propose
- ) ~is optimal in the sense that we calculate the linear transforma-
In most HMM-based recognition systems, a mixture of diagotion that minimises the magnitude of the off-diagonal elements

nal covariance gaussians is used to model the observation densiffthe covariance matrices over all gaussians with a least-squares
functions in the states. The usedifgonal covariance gaussians method.

however assumes that the underlying data vectors have uncorre-

lated vector components: if each gaussian is replaced with its fullhe remainder of the text is organised as follows. First the decor-
covariant counterpart, the off-diagonal elements in the covariancelation algorithm is explained in detail. Next, the algorithm is
matrices should be small. To that end, most recognition systemmempared with some existing alternatives. Finally, the method is
have some kind of decorrelation matrix near the end of the preprevaluated on two speech recognition tasks, and some remarks are
cessing. Examples are the inverse cosine transform used with cegpven.

stral coefficients, and principal component analysis (PCA) or lin-

ear discriminant analysis (LDA) of the features. However, none of

these transforms is optimal if it comes to reducing the mismatch 2. ALGORITHM
introduced by setting the off-diagonal elements in the covariance
matrices to zero. As mentioned above, we search for a single linear transformation

The algorithm described in this paper reduces the local corr®&f the acoustic features that minimises the average of the square of
lations between feature vector components inside the gaussidhg off-diagonal elements over a large set of covariance matrices.
with a single global linear transform at the end of the preprocesd© compensate for a possible scaling of the axes, the off-diagonal
ing stage. The algorithm is optimal in the sense that we calculagiéments are normalised with respect to the diagonal elements.
the linear transformation that minimises the sum of the square dhus, what is actually minimised is a weighted sum of the square

all off-diagonal elements over all gaussians. of the correlation coefficients between the parameters, and this
The algorithm is compared with principal component analysigimultaneously over all gaussians.

linear discriminant analysis and the recently published maxi- () () . .
mum likelihood modelling for semi-tied covariance matrices. Th&-€tA ™" be the(mn)wean anB™’ thefull covariance matrix of gaus-
decorrelation method is also evaluated on two speech recogniti§ian ™ With ;7" the component on row and columnj. And

tasks. A significant relative improvement was achieved in botft V™’ be the number of points assigned to gaussiamith
cases. N = >> N the total number of points in the training data

and\™ = NU™/N the weight of the gaussian. We then have
to find a transformation matrid that minimises the following

1. INTRODUCTION quantity:
In many speech recognition systems, the observation density $0m) 2
functions are modelled as mixtures of diagonal covariance gaus- oA —— 1)
sians. These mixtures of gaussians are however only approxi- . it S0 $0m)

mations of the real distributions. One of the approximations is

the assumption that the off-diagonal elements of the covarianggip

matrices of the gaussians are close to zero. To that end, most ) gxym) 4T

recognition systems have some kind of parameter decorrelation

near the end of the preprocessing. Examples are the inverse ddis quantity can be optimised with numerical techniques, e.g. by
sine transform used with cepstral transformations, and principglecomposing the transformation matrxinto a product of basic
component analysis (PCA) or linear discriminant analysis (LDAJransformations of the forrff + 4;;) with I the identity matrix

of the features. None of these transforms are however designedifidd;; & matrix equal to zero except for eleméit;).

an optimal way as to minimise the magnitude of the off-diagonal o . o )
The optimisation problem is strongly simplified if the normali-

* Lernout & Hauspie Speech Products. sation with respect to the variance is omitted. As to limit the




mismatch between the quantity that has to be minimised (funthe diagonal covariance gaussians in the subset still allow for an
tion 1) and the approximation without the normalisation, somadditional scaling of the axes. This is similar to the semi-tied co-
pre-compensation is done: the data space is first transformed \&riance matrices presented in [4]. When multiple decorrelation
that the average covariance matihgy = > A 0™ equals matrices are used, a normalisation of the matrices is needed to
the identity matrix (multiplying with the transpose of the eigen{prevent an arbitrary scaling of the likelihood of the gaussians over
vectors, followed by a proper scaling). This makes that the nothe different subsets. More information on semi-tied covariance
malisation terms in formula 1 are close to one and thus can leatrices and on the scaling can be found in [4, 5].

omitted. To prevent scaling of axes, the rest of the transforma-

tion (on top of the pre-compensation) is limited to the class of

orthonormal transformations (rotations). For the optimisation,we 3. COMPARISON WITH OTHER

therefore decpmpose the remainder of the transformation in ele- METHODS
mentary rotationd?;; (Givens rotations).
1 0 3.1. Principal component analysis
R — “cos()  sin(6) i Principal component analysis [1] results in a global decorrelation
Y —sin(6) B cos(6) —j of the features. This means that the global covariance matrix of
0 i the features is a diagonal matrix, or after proper scaling the iden-

tity matrix. A global decorrelation however does not provide for
Expanding formula 1 for an elementary Givens rotatiyy  local decorrelation of the data inside the gaussians in the system.
(omitting the normalisation) shows that the optingalcan be This is clearly shown in figure 1. And although there is no perfect
found by minimising the following quantity: solution for the situation presented in figure 1, a simple redefini-

asin”(26) + 4bcos®(260) + 2csin(26) cos(26)
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" Figure 1: A global decorrelation of the parameter space is not

sufficient to decorrelate the data on the gaussian level. Each el-
The simplified optimisation algorithm thus consists of the follow4ipse is the contour-line of a full covariance gaussian. The dashed
ing steps: line represents the global correlation of all data.

1 Do the pre-compensation, and update the covariance ) )
matricesn (™ tion of the axes can reduce the number of gaussians that cannot

be modelled correctly with a diagonal covariance from 4 to 1, and
that is by close approximation what the proposed decorrelation
algorithm will do.

2 For everyj, and for everyi < j, determine the op-
timal rotation# and update the covariance matrices
™) and the transformation matrig.

3 Repeat step 2 until convergence (e.g. less than 0.05%
relative improvement on the quantity that is to be
minimised).

3.2. Linear discriminant analysis

Linear discriminant analysis [3] is widely used to reduce a large

S o set of features to a smaller set, with minimal loss in performance.
The advantage of the simplified version is its fast convergence Sne of the side effects of LDA is a 'whitening' (decorrelation)

iterations typically) at a low cost per iteration. And although theyf the average within class covariance matrix. If the classes are
simplified version does not provide the optimal transformationgefined to be the gaussians, then the ‘whitening’ operation will
the resulting decorrelation matrix is close to the optimum and caghsure that the average covariance mafiiy as defined in sec-
eventually be used as starting point for a full optimisation. tion 2, has a diagonal form. However, only theeragecovariance

The transformed set of diagonal covariance gaussians to be u%ﬁmx is optimised. No optimisation over all gaussians is done,
. g . . 9 ich may result in a poor decorrelation after all on the gaussian
in the HMM system can be easily derived from the set of full

. () (m) level. This is shown in the left upper corner of figure 2.
covariance matrices‘™’ and meang'™ .

Itis also possible to split the set of gaussians in the HMM systelB.3.  Maximum likelihood optimisation
in two or more logical subsets, and have a decorrelation matrix

for every subset. The decorrelation matrices then can be seenTd® recently developed maximum likelihood modelling for semi-
a shared full covariance matrix for the subset of gaussians, whileed covariance matrices [4, 5, 6] searches for the linear transfor-



mation A that maximises the likelihood of the training data (evalthen added at the end of the preprocessing stage and an updated

uated in the original, non transformed domain) when the data &et of gaussians is derived from the full covariance matrices calcu-

modelled with diagonal covariance matrices in a transformed ddated in the previous step. Finally, two extra iterations of Viterbi-

main. Therefore, following expression has to be maximised:  training are done to adapt all parameters in the system to the new
preprocessing.

_ N(m)
| pi

A" ] |diagras™ A™) )

Three different types of preprocessing were investigated. All pre-
processings start from a set of 24 mean-normalised log filter-bank
It is easy to show that any transformation of the foffn+ 6;;) ~ outputs, and the mean-normalised log of the energy.

as defined in section 2, which decreases the amplitude of an el-
ementS {7, also increases the value fifiag(x™)| (note that

|I +0;5] = 1). The net effect of maximising function 2 is thus
also one of minimising a weighted average of the amplitude of the
off-diagonal elements in the covariance matrices. Main difference
with the least-squares solution as presented in this paper is the
cost assigned to every non-zero off-diagonal element. Figure 2
[ ]

e Preprocessingltransforms the filter-bank outputs to
cepstral parameters (inverse cosine transform), re-
places cep[0] with the log energy and selects the first
6, 9 or 13 parameters. Finally, this set is augmented
with the first and second time derivatives (eventually

the last two second derivatives are omitted).

Preprocessing2 does an LDA-transform on the
filter-bank outputs and selects the 6, 9 or 13 first pa-
rameters. Finally, this set is augmented with the first
and second time derivatives (eventually the last two
second derivatives are omitted).
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Preprocessing3 does an LDA-transform on the
filter-bank outputs and selects the 6, 9 or 13 first pa-
rameters. Next, 5 consecutive frames are stacked and
a second LDA is performed, resulting in 16, 25 or 39
parameters.
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The LDA-transforms in the described preprocessings are used to
reduce the size of the feature set, not to decorrelate. So the HMM
states are used as classes, not the gaussians.

o

In a first set of preliminary tests, the simplified optimisation was

compared with the full optimisation on a small set of experiments.

Both methods performed equally well on average, but since the
full optimisation is conceptually more correct, the remaining ex-

periments were done with the full optimisation.
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Figure 2: Comparison between three methods to decorrelate
the gaussians. Starting point for all three methods is the LDA#Params; 16 25 39) 16 25 39) 16 25 39
transformation (left-upper corner). preproc. 1 preproc. 2 preproc. 3
#gauss.| average WER without the extra decorrelation step
3018 |9.10 7.62 7.307.98 7.22 6.998.66 6.89 6.6%
shows the effect of the maximum likelihood optimisation and the 4527 |8.41 7.02 6.827.55 6.34 6.618.15 6.74 6.16
full and simplified least-squares optimisation. The slight differ} 7243 |8.57 6.84 6.126.94 6.16 6.2{7.96 6.44 6.1¢
ences between the three methods are due to the different inteffgauss.| average WER with the extra decorrelation step
pretation of how bad a certain off-diagonal element is. Note that 3018 |8.62 6.98 6.287.98 6.74 6.307.94 6.72 6.37
if there is a perfect solution to the problem (all off-diagonal elef 4527 |8.38 6.50 6.317.51 6.25 5.987.74 6.45 5.92
ments equal to zero) it will be found by all three methods. 7243 |8.28 6.33 5.786.91 5.75 6.087.56 6.34 5.84
#gauss. relative improvement (percentage)
3018 53 84 140 00 66 99 83 25 472
4. EXPERIMENTS & RESULTS 4527 | 0.4 7.4 78 05 14 95 50 43 39
7243 34 75 54 04 6.7 3.0 50 16 5.2

A first set of experiments was conducted on the ARPA Resource
Management task. We investigated the behaviour of the decorable 1: Results on the ARPA RM test-sets (feb89 + oct89 +
relation in function of the number of gaussians in the systenieb91 + sep92) with the standard Word Pair Grammar (context-
the number of acoustic parameters and the type of preprocessiiiglependent modelling).

For all situations, 46 3-state context-independent phone models

were trained on the standard SI-109 training set, using our semi-

continuous HMM system [2]. Next, full covariance matrices areTable 1 gives an overview of the results. The use of the decorrela-
calculated for all gaussians in the system, based on which thien algorithm always results in a significant relative reduction on
decorrelation matrix is calculated. The decorrelation matrix ishe error rate, so none of the proposed preprocessings does a good



jobin decorrelating the features on the gaussian level. The relati ‘ ‘ . . . . .
improvement also shows to be larger when more input paramete -.
and/or less gaussians are used. This is in line with expectatior S -- =
since larger feature-sets in general show more correlation, whi | - i
the introduction of more gaussians reduces the complexity of tt " - A
volume a single gaussian has to model. % 151 i
A second set of experiments was conducted on the Wall Stre § 20t i
Journal November 92 task, using context-dependent models. T g --1 -
baseline system used for the task is a gender-independent cro £ 25 = 1
word triphone tied-state reduced semi-continuous HMM sys ° -'-_
tem [2]. The HMM contains 20254 gaussians in total, with which 30 m 1
10436 states are modelled resulting in 33169 distinct cross-wol
triphones. For the preprocessing, we selected preprocessing 35y 1
with 39 parameters. The results are shown in table 2. The decc . . . . g ‘ |
5 10 15 20 25 30 35
input parameters: (enery, cep[1-12]) x (static, delta, delta—delta)
train-set | 2-gram 5k 2-gram 20k 3-gram 5k 3-gram 20k
WER without the extra decorrelation step Figure 3: The magnitude of the elements in the transformation
WSJO 6.61 13.34 4.09 11.13 matrix (WSJO+1). White corresponds to zero.
WSJOo+1 4.99 11.39 3.25 9.16
WER with the extra decorrelation step
WSJO0 5.70 12.62 3.38 10.07 5. CONCLUSIONS
WSJ0+1 4.50 10.46 2.62 8.54
relative improvement (percentage) This paper showed that an extra decorrelation of the input features
WSJO 13.8 54 17.4 95 on the gaussian level can result in substantially better acoustic
WSJO+1 9.8 8.2 19.4 6.8 models when mixtures of diagonal covariance gaussians are used
WER with maximum likelihood modelling [4] to model the observation density functions. It also showed the
WSJO+1 4.58 10.56 282 8.52 equivalency between the recently published maximum likelihood
WER with the simplified decorrelation algoritqm ~ modelling for semi-tied covariance matrices and the least-squares
WSJ0+1 446 10.63 271 351 decorrelation approach used in this paper. We believe that pa-

rameter normalisations like the one presented in this paper will

Table 2: Results on the ARPA WSJ-nov92-nvp test-sets, usPecome more and more important in the near future when more
ing the official bigram and trigram language models (contexteXPerimental feature sets like acoustic parameters are to be used.
dependent modelling).
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