
SEMOLE:
A ROBUST FRAMEWORK FOR GATHERING INFORMATION FROM

THE WORLD WIDE WEB1

Hyung-Jin Kim and Lee Hetherington

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139 USA

http://www.sls.lcs.mit.edu
{indigo, ilh}@sls.lcs.mit.edu

ABSTRACT
This paper describes seMole (semantic Mole), a robust frame-
work for harvesting information from the World Wide Web.
Unlike commercially available harvesting programs that use
absolute addressing, seMole uses a semantic addressing scheme
to gather information from HTML pages. Instead of relying on
the HTML structure to locate data, semantic addressing relies on
the relative position of key/value pairs to locate data. This
scheme abstracts away from the underlying HTML structure of
Web pages, allowing information gathering to only depend on
the content of pages, which in large part does not change over
time. We use this framework to gather information from various
data sources including Boston Sidewalk and the CNN Weather
Site. Through these experiments we find that seMole is more
robust to changes in the Web sites and it is simpler to use and
maintain than systems that use absolute addressing.

1. INTRODUCTION

In 1994, the MIT Spoken Language Systems Group introduced
GALAXY, a client-server architecture for accessing on-line infor-
mation using spoken dialogue [1]. Since then, GALAXY has
served as the testbed for our research and development of human
language technologies, resulting in systems with expertise in
various domains (A domain is one type of information such as
airline information or weather information). In 1996, we made
our first significant architectural redesign and introduced
WEBGALAXY, which had a Java GUI to permit universal access
via any web browser [2]. While the underlying human language
technologies were the same across all domains, the information
access/retrieval mechanisms for WEBGALAXY domains were
developed separately and therefore lacked several key features:

• Code re-use: Because each domain was written with a dif-
ferent computer language, the work used to develop one
domain could not be re-used to develop a new domain.

• Robustness: All information was gathered using an absolute
addressing scheme similar to the addressing scheme of the
WIDL language developed by WebMethods [3]. Data was
gathered from each Web page by using the absolute HTML
position of the data on the page. Therefore, if the page
changed even slightly, the data retrieval would likely fail.

1This research was supported by DARPA under contract N66001-96-C-
8526, monitored through Naval Command, Control and Ocean Sur-
veillance Center and a research contract from Bell Atlantic.

SeMole (semantic Mole) is an information retrieval framework
that addresses these problems. Since seMole is a server-based
framework in which all code resides on the server, it allows code
to be re-used by anyone using the seMole framework. For ex-
ample, a ski information harvester that needs information about
the current weather can also invoke a weather harvester that
resides on the server.

With seMole, users define semantic templates, XML-based
scripts that use semantic addressing to gather information from a
Web page. Many of today’s commercial Web harvesting pack-
ages (i.e., WebMethod’s B2B [3] and AgentSoft’s LiveAgent
Pro [4]) use an absolute addressing scheme to gather informa-
tion from Web pages. An example absolute address for a hypo-
thetical Web page is “The third text element matching the regu-
lar expression ‘high forecast’ under the second table element in
the HTML structure.” These addresses are very susceptible to
small changes in the HTML structure. If, for example, another
table were inserted at the beginning of our hypothetical Web
page, then the absolute address would be pointing to the wrong
data. For absolute addressing schemes to be reliable, the posi-
tion of all pieces of data in the HTML structure must be consis-
tent from one version of the page to the next. Unfortunately,
since Web pages are usually updated often (to update the ap-
pearance or to change data on the page), these absolute address-
ing schemes tend to fail on a regular basis.

Semantic addressing, on the other hand, relies on the content of
the page to find data rather than the HTML structure by itself.
For example, to find information about the Wednesday high
temperature forecast on a weather page, a semantic address
might be “the integer nearest the word ‘high’ nearest the word
‘Wednesday’.” This scheme is entirely independent of the
HTML structure and only depends on how key/value pairs are
placed in the two-dimensional HTML space. Further, notice
that no matter how much the Web page changes, the content of
the page will remain the same: there will always be a Wednes-
day high forecast. Therefore, even if the façade of this weather
site changes, semantic addressing will still retrieve the correct
data.

2. SYSTEM DESCRIPTION
We used two frameworks to compare semantic addressing to
absolute addressing: seMole and absMole. SeMole and absMole
are very similar: they both share components to interface to the
Web and they are both Java Server servlets (the Java Web
Server uses Java applications called servlets. Similar to cgi-
scripts, they are fast and easy to prototype).

<getCNNWeather>
 <near>
 <fetchpage>
 “http://www.cnn.com/WEATHER/html/
 CambridgeMA.html”
 </ fetchpage>
 “Wed.|Wednesday”;
 “HIGH”;
 “[0-9]*”;
 </ near>
</getCNNWeather>

Figure 1: A sample template to gather information from the
CNN Weather site. The “fetchpage” runs first. It requests the
Web parser to retrieve a page from www.cnn.com; its result is
one of four arguments passed to the command “near.” The
“near” command then requests the semantic parser to find the
high temperature forecast for Wednesday on the CNN Web page
(i.e., integer nearest the word HIGH nearest the word Wednes-
day).

2.1. seMole

SeMole has three main components: the Web parser, the seMole
language, and the semantic engine. The Web parser is responsi-
ble for interfacing seMole to the World Wide Web. It extends
an XML parser developed by Microsoft [5]. This parser has
been modified to parse HTML pages as well as XML pages.
This allows seMole to gather data from any current page on the
Web as well as any future pages written in XML.

The seMole language is the user interface into the seMole
framework. Based on XML, the seMole language is a high-level
scripting language that allows users to quickly develop semantic
templates to gather information from Web sites. These tem-
plates map information found on a Web page to an XML reply.
Each tag within the template represents a command. Control
flows bottom-up (from child to parent) in each template (see
Figure 1).

A template not only defines how information is gathered from a
site, but it also defines how the information is returned to the
user. After the completion of a command, the result of that
command takes the place of the command originally in the tem-
plate structure. Once completed, the template is returned to the
user with only the results (see Figure 2).

The semantic engine is the heart of seMole: it is responsible for
robustly finding information retrieved from the Web. The se-
mantic engine relies on semantic keys to find information on
Web pages. A semantic key is a token (a text tag in the HTML
structure) that matches a word or a phrase in a frame. This word
or phrase labels a value on the frame. In Figure 1, the “near”
command uses the regular expression “HIGH” to find the se-
mantic key “HIGH” in the HTML structure. This key, in turn,
labels a value: in this case, an integer representing the high fore-
cast. In most cases, a regular expression will match multiple
semantic keys on a Web page. To find the best fit for this regu-
lar expression, various heuristics are applied to the Web page to
find the best match to the regular expression. These heuristics
include:

• How the key is formatted relative to the value. In most
cases, a key has a “higher” typing than a value (e.g., a key
will have a bigger font or it may be bold).

• How well the regular expression matches the keys.
• If there are multiple keys matched to one value, the dis-

tance between the keys and value determine which is the
proper key. If there are multiple keys with multiple values,
then semantic groups are used.

<getCNNWeather>
 <near_result>
 95
 </near_result>
</getCNNWeather>

Figure 2: The result of the template in figure x. Notice that the
result of the “near” command (“near_result”) took the place of
the original “near” command.

To find groups of information, (e.g., multiple flight schedules)
the parser makes use of semantic groups. While semantic keys
define a relationship between a key and a value within a page,
semantic groups define a relationship amongst groups of
key/value pairs. For example, in Figure 3 we have a page with
information about a multi-leg flight. One flight leg is one se-
mantic group. Using seMole, we can define one template to find
data on one leg. When this template is applied to the page, the
semantic engine will apply the template two times without
overlapping pieces of data across groups.

The Web parser, the seMole language, and the semantic engine
allow a user to find information independent of the underlying
HTML structure. Therefore, even if the same data is presented
in a completely new HTML façade, seMole will still be able to
find the data with the same template.

2.2. absMole

The absMole is an absolute addressing framework that we
developed to test seMole’s performance. It shares all the
components of seMole, except for one: the semantic engine. In
its place is an absolute engine modeled after the WIDL language
developed by WebMethods. As specified in the WIDL
whitepaper, WIDL uses a mix of regular expression matching
and absolute addressing to find data [3]. Our absolute engine
uses a group of absMole language commands to only allow for
regular expression matching and absolute addressing. Although
the language may differ from WIDL, the fundamental
mechanism for finding data remains the same.

3. RESULTS

We compare seMole’s semantic engine to absMole’s absolute
engine by creating templates for various Web sites. A Web site
refers to any source of on-line information that presents HTML
information about one domain (e.g., stock information). Each
Web site that we considered had more than one page of infor-
mation, with each page describing its own target (e.g., Microsoft
stock, or Ascend stock). Each of these target pages is called a
frame of data.

Each Web site was categorized in terms of topology (persistent
or transient) and data (persistent or transient). “Topology” re-
fers to how the data is presented in a frame. If a site has persis-
tent topology, then the data is in the same place across all frames
and each frame’s topology is consistent through time. If the data
is located in different places from one frame to the next, the
topology is said to be transient. “Data” refers to the amount of
data present on the frame. When the amount of data is the same
across all frames, the site is said to have persistent data. If there
is a discrepancy in the amount of data from one frame to the
next or across time (the key, value, or both may be missing), the
site is said to have transient data.

Flight #1 8/12/98

Departs: Houston, TX (IAH) Arrives: Honolulu, Oahu, HI (HNL)
Gate: C-14 Gate: 10
Scheduled Time: 9:45 am Scheduled Time: 12:45 pm
Actual Time: 11:10 am Estimated Time: 1:45 pm
Status: In Flight

Departs: Honolulu, Oahu, HI (HNL) Arrives: Agana, Guam (GUM)
Gate: 11 Gate: 09
Scheduled Time: 1:45 pm Scheduled Time: 5:25 pm
Estimated Time: 2:30 pm Estimated Time: 6:10 pm
Status: Running Late

Figure 3: A flight schedule for Continental flight #1 with two
legs.

3.1. CNN Weather Site:
Persistent Topology, Persistent Data

One of the first sites that we considered was the CNN Weather
Site [6]. This site has over 6,100 frames of data for various
cities worldwide. These frames largely have persistent topology
as well as persistent data. We attempted to gather weather data
using seMole and the absMole. Templates created for seMole
were approximately half as long as the absMole templates.
Because there were fewer commands to parse, the seMole tem-
plates usually ran twice as fast as the corresponding absMole
templates.

Because the topology and data were persistent, both seMole and
absMole consistently gathered the same data. The only discrep-
ancy between the two frameworks occurred when the CNN
Weather Web site changed its façade in March of 1998. Ban-
ners were added and tables were rearranged to update the ap-
pearance of the site. Further, important key/value pairs of data
(e.g., “HIGH” and “72”) were tagged with different fonts and
typing. This, in turn, rearranged the HTML hierarchy that
absMole relied on to gather information from the frame. Be-
cause of this, the absMole’s template failed entirely. To fix the
template, all references to the HTML structure had to be rela-
beled so that the template queried the proper parts of the HTML
structure.

Although absMole’s template failed, seMole’s template contin-
ued to properly gather information from the site. This is largely
because the semantic keys remained. Although they now had
different fonts and typing, keys such as “HIGH”, “LOW”, and
“WIND”, still stayed relatively near the data that they labeled.

3.2. Cool Travel Assistant:
Transient Topology, Persistent Data

Another Web site that we gathered data from is CO.O.L. Travel
Assistant [7]. This site provided flight information for various
airlines. Each frame presented on this site held information
about one flight (see Figure 3). Each of these frames contained
a variable number of legs for each flight (each flight had at least
one leg). For each leg of the flight, there existed one table de-
aasdf

scribing where the flight originated, ended, its estimated flight
time, and its current status. Data was persistent within each leg,
allowing us to predict what kind of data each leg had. Unfortu-
nately, there was no information on each frame to determine
how many legs to expect on each frame. This information had
to be determined automatically.

We first attempted to gather data from this site using absMole.
Because each leg of each flight was presented using the same
table structure, we were able to define a simple subroutine tem-
plate to gather information from one leg. However, to apply this
subroutine to a variable number of legs, we needed to rely on the
structure encapsulating the legs. From this structure, we directly
determined the number of legs presented on the frame, and ap-
plied the subroutine to each leg’s table. Unfortunately, this ap-
proach is vulnerable to many possible inconsistencies of the
frames. For example, if banners or advertisements were added
between the legs, this template would incorrectly determine the
number of legs per flight. Further, we relied on the fact that one
HTML node is a parent of the tables representing each leg.
Therefore, if the parent node moved in the frame, or if each leg
were presented using more than one table, this template would
again fail.

We then gathered the same information using seMole. As with
absMole, we first created a simple “subroutine” template to
gather information from one leg on the frame. Like other
seMole templates, this subroutine template used semantic tags to
find airline information. Therefore, even if the information for
one leg of a flight were spread over more than one table, this
subroutine would still be able to properly group the leg’s data.
To capture all the legs within the frame, we took advantage of
the seMole’s semantic grouping ability. Instead of explicitly
finding the number of frames by looking at the HTML structure,
we simply created another template that applied the subroutine
template across the entire frame. Since all the information for
one leg was always grouped together, seMole was able to differ-
entiate between two different legs and independently apply the
subroutine template to each leg. This was accomplished without
the aid of the HTML substructure. Since this template was cre-
ated without any dependence on the HTML structure, it was
very robust to any changes in the topology of the frames.

3.3. Boston Sidewalk:
Persistent Topology, Transient Data

Another domain that we attempted to harvest is restaurant in-
formation. For this domain, we used the Boston Sidewalk site
[8]. This site contains a repository of restaurants in the Boston
area. The frames are organized under various categories (Chi-
nese, Italian, etc.) and provide information about hours, payment
options, parking availability, as well as reviews by Boston
Sidewalk. Although the frames are topologically similar, not all
the data is available for all restaurants. For instance, some
frames lacked information about parking and therefore lacked a
key/value pair for parking. Further, the Sidewalk review on
each page lacked a key, making it difficult to locate.

Again, we first attempted to harvest each frame using absMole.
The sidewalk review was always located in a certain location
within the HTML structure, so retrieving the review was
straightforward. However, retrieving the transient data (e.g.,
payment options and parking) proved to be more problematic.
lank

Robust-
ness

Faster template
prototyping

Running
time

Persistent data seMole absMole even
Transient data seMole seMole seMole
Persistent
Topology

seMole absMole even

Transient
topology

seMole seMole
(semantic groups)

seMole

Many
semantic keys

seMole seMole seMole

Few
semantic keys

absMole absMole seMole

Table 1: A comparison between seMole and absMole for our
three experiments. Each table element describes which
framework (seMole or absMole) is better for that category. Note
that the running time of absMole does not necessarily reflect
running time of other commercial harvester applications.

To tackle this problem, we used several conditional statements
to search for the transient data. Unfortunately, these conditional
statements, as well as the statements used to retrieve the review,
depended heavily on the structure of the HTML. The condi-
tional statements queried a certain portion of the HTML struc-
ture. If the HTML structure changed even slightly, the queries
would return garbage data.

Retrieving the transient data proved to be simpler with seMole.
Since seMole only returns data that match the template, we cre-
ated a strict template that never returned false data. For exam-
ple, for parking availability, we queried the entire frame for the
key “parking” followed by the regular expression
“yes|no|none|street|garage”. When the data was not present, this
key/value pair was so strict that no false matches were returned.
However, since there was no semantic key labeling the review,
fetching the review from the frame proved to be difficult with
seMole. Since we lacked a generic solution to finding the re-
view on the page, we used an absolute addressing approach and
fetched a certain part of the HTML structure that we expected to
be the review.

4. DISCUSSION AND FUTURE WORK

This paper describes our efforts to develop a semantic
addressing system for our WEBGALAXY architecture. Our
experiments have shown that our semantic addressing system,
seMole, is more robust and simpler to use than our absolute
addressing system, absMole (see Table 1). This is because
semantic addressing is able to abstract away from the HTML
structure, allowing it to capture data when either the data or the
topology is highly transient. In comparison, absolute addressing
has proved to be cumbersome mechanism when dealing with
transient topology or transient data because it is heavily
dependent on the structure of HTML pages.

The only case where the absMole was more efficient to use was
when the data was very persistent from one frame to the next. In
these cases, the overhead required to do a semantic search
through the HTML space was superfluous. Further, seMole was
incapable of dealing with frames of data that have very few
semantic keys. This is because almost all of the commands in
seMole language rely on the user knowing what semantic keys
to search for to find data. For example, in the Boston Sidewalk
asdf

experiment, the review lacked a label. Without anything to
identify the review, seMole could not robustly find the data on
the page without resorting to absolute addressing.

Currently, seMole requires a large amount of user intervention
to harvest data from the Web: users must study the target Web
page, create a template, and test the template across many
frames to check for robustness. In an effort to make harvesting
Web pages simpler, future iterations of seMole will include a
dispatcher which will automatically apply templates to a large
pool of Web sites with only minimal user intervention. The
dispatcher will take advantage of the fact that many of the
templates that we have developed can easily be applied to
various Web sites under one domain. For example, our CNN
weather forecast template can also be applied to any other
weather site that has day to day forecasts for US cities. By
spreading information retrieval across multiple web sites, the
dispatcher aims to make the seMole even more robust.

At an abstract level, a seMole template maps HTML to XML.
XML is a burgeoning standard that will use HTML-like tags to
label information on Web page [9]. XML is an attempt by the
W3 Consortium to accomplish what HTML was originally
intended for: to label data with semantic tags. Since seMole
uses XML as its interface, seMole acts a link between HTML
and XML. With its explosive growth, the Web will inevitably
become a universally available, time-critical database.
However, since many Web pages are still being written with
HTML, these pages lack any structure to find and manipulate
data. We believe that seMole is a bridge that overcomes this
problem.

5. ACKNOWLEDGEMENTS

We would like to thank Giovanni Flammia and Victor Zue for
their inspiration to develop absMole and seMole. We would
also like to thank Raymond Lau, Stephanie Seneff, and Philipp
Schmid for testing seMole and for developing templates for
WEBGALAXY.

6. REFERENCES

[1] D. Goddeau, E. Brill, J. Glass, C. Pao, M. Phillips, J.
Polifroni, S. Seneff, and V. Zue, “Galaxy: A Human-
Language Interface to On-Line Travel Information,”
Proc. International Conference on Spoken Language
Processing, pp. 707-710, Yokohama, Japan, Sep. 1994.

[2] R. Lau, G. Flammia, C. Pao, V. Zue, “WebGALAXY -
Integrating Spoken Language and Hypertext Naviga-
tion,” in Proc. Eurospeech 1997, pp. 883-886, Rhodes,
Greece, Sep. 1997.

[3] C. Allen, “WIDL: Application Integration with XML,”
in World Wide Web Journal, Vol.2, Issue 4, Fall 1997.
(http://www.agentsoft.com/whit.html).

[4] “AgentSoft and Automation Technology White Paper—
Description and Comparison,” AgentSoft Ltd., 1998.
(http://www.agentsoft.com/compare.html).

[5] “Extensible Markup Language (XML),” Microsoft,
1998. (http://www.microsoft.com/workshop/c-
frame.htm#/xml/default.asp).

[6] “CNN - Weather,” Cable News Network, 1998.
(http://www.cnn.com/WEATHER).

[7] “CO.O.L. Travel Assistant,” Continental Airlines, 1998.
(http://cooltravelassistant.com).

[8] “Boston Sidewalk,” Microsoft Corporation, 1998.
(http://boston.sidewalk.com).

[9] “Extensible Markup Language,” World Wide Web Con-
soritium, 1998. (http://www.w3.org/XML/).

