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Abstract

We present automatic language recognition results using
high-order hidden Markov models (HMM) and the recently
developed ORder rEDucing (ORED) and Fast Incremental
Training (FIT) HMM algorithms. We demonstrate the effi-
ciency and accuracy of pseudo-phoneme context and dura-
tion modelling mixed-order HMMs as well as fixed order
HMMs over conventional approaches. For a two language
problem, we show that a third-order FIT trained HMM
gives a test set accuracy of 97.4% compared to 89.7% for
a conventionally trained third-order HMM. A first-order
model achieved 82.1% accuracy on the same problem.

1 Introduction

In a companion paper [1], we developed theory for efficient
high-order hidden Markov modelling. In this paper we
demonstrate its practical applicability to speech process-
ing. Phonotactic modelling in automatic language recogni-
tion (ALR) systems is a large and complex model of the in-
terdependence of the phonemes of each language. Because
of the size and complexity of these models, we have chosen
this as a suitable field to demonstrate our techniques with.
The intention of this paper is to demonstrate the applica-
bility of high-order HMMs trained using ORED/FIT ap-
proach to a practical speech system, not to develop a fully-
fledged ALR system. In particular, we compare FIT to con-
ventional high-order HMM training and we investigate the
effect of specialised context and duration modelling mixed-
order HMMs we have developed. We consider the use of
ergodic high-order HMMs to model languages as this ap-
proach does not require costly phoneme transcription of the
speech data. Details of some other ALR systems may be
found in [3, 4, 5, 6].

2 Database and signal processing

Our prior work [7] indicated that about 1 hour of speech
was adequate for modelling a language with a first-order
HMM. Preliminary experiments indicated that the higher-
order Markov models would need substantially more data.

Since they need not be transcribed, this does not necessar-
ily pose a problem. From the OGI-TS1 database, roughly
100 minutes of free-format English and Hindi speech was
available as training data. These were the two largest col-
lections of data available and were therefore used in the
experiments. Silence sections in the recordings were re-
moved automatically by using an energy criterion. The
power in the remainder was normalised to compensate for
recording volume. After pre-emphasis, tenth-order LPC-
cepstra and delta-cepstra features were calculated from
32ms time frames spaced at 16ms intervals. Cepstral mean
subtraction was used to compensate for channel variation.
For testing data, two independent sets of data were used.
These were 5s segments and the 45s NIST’95 LID set.
Each language model had its own transition probability de-
scription, while one central set of pdfs was referenced col-
lectively by all the language models.

3 HMM structure and training pro-
cedure

In an application like language recognition, the left-to-
right HMMs commonly used in speech recognition sys-
tems are inappropriate as the the HMM can start in any
state and jump to any state as dictated by the language
model. In this work, we use sixteen state ergodic high-
order HMMs, The state transition probabilities are selected
for first- and fixed-order HMMs as well as mixed-order
models that model both “phoneme” context and duration
[1]. Fixed order models of ordern are labeled Fn i.e. a
second-order fixed model is labeled F2. Context models
and duration models are labeled Cn and Dn respectively.
We also investigate models that implement both context
and duration modelling. These are labeled as CnDmmod-
els wheren andm refer to the order of the context and
duration respectively [2]. The ALR system consists of a
bank of such models, each optimised to a specific language.
Unknown speech is matched to each of the models and
classified according to which one fits best. Prior work [7]

1The Oregon Graduate Institute kindly made the OGI-TS database
available to us



has shown first-order ergodic HMMs which use a common
set of probability density functions (pdf) for all the lan-
guages to be modelled significantly enhances robustness.
All training was done using the Viterbi re-estimation al-
gorithm [8]. Higher-order models were always reduced to
equivalent first-order form by using the ORED algorithm,
enabling the use of the first-order re-estimation algorithm
in all cases.

The Viterbi algorithm includes a matrix that records the op-
timal path between states as a function of time. In a first-
order HMM system, the product of the number of states
with the number of time frames in the speech segment,
dictates the size of this matrix. To reduce the demands
on memory, the training sequences were subdivided into
5s sequences that formed the basic patterns presented to
the system. After training, all transition probabilities lead-
ing from the initial state were set to be equal (i.e. 1/16)
to ensure that the model could start in any state with equal
probability.

4 Comparison between FIT and di-
rect training

We now compare ALR results for fixed-order models
trained using the FIT algorithm (train successively higher
order models) and direct training (order reduction followed
by training). These results will validate results obtained on
synthetic data as reported in [1]. FIT trained models are
labeled Fn while direct trained models are labeled Xn.

4.1 Computational requirements

The computational costs of the different approaches are
measured in terms of the number of transition probabili-
ties, memory requirements) and the number of operations
(CPU time) required to process equivalent problems. The
results are summarised in Table 1. We find that the com-
putational advantage of the FIT approach becomes signifi-
cant for third-order models. The final F3 model contained
a compact 2301 transition probabilities compared to the
47161 probabilities in the X3 model. These additional
transition probabilities translate directly into CPU time and
memory costs. From this it is clear that the FIT algorithm
results in much more compact models, getting more so as
the order increases. This corroborates the results obtained
from synthetic data using this approach [1].

4.2 Classification accuracy

We now compare the classification accuracy of the FIT and
direct training approaches. These results are summarised
in Table 2 and Table 3. On the training data, the accu-
racy of the FIT and direct trained models are comparable.

Order MEM CPU Size
2 69% 94% 70%
3 13% 7% 5%

Table 1: Comparison of computational requirements and
final model sizes for 16-state ergodic HMMs trained via
direct and FIT algorithms. The results are expressed as
FIT requirements as a percentage of direct requirements.

On independent testing data, however, in all cases the FIT
trained models perform similarly or better than the direct
trained models. Furthermore, all the FIT trained models
result in smaller differences between training and testing
set accuracies than those achieved by the direct trained
models. This, combined with the larger models that re-
sulted from direct training, indicates greater specialisation
in such models. With the 5s classification trials, a McNe-
mar test [9] with a 90% significance level shows all the
high-order models to be more accurate than the baseline
HMM1. Due to the rather small test set, the experiment
based on the NIST’95 45s set (39 trials) could only show
the 3rd-order FIT model (F3) to be more accurate than the
1st-order HMM on a 90% significance level. No statisti-
cally significant differences could be detected between the
direct and FIT trained models. The FIT approach thus ob-
tains statistically similar results at a significantly reduced
computational cost.

5s (2169 trials) 45s (339 trials)
Order Direct FIT Direct FIT

1 83.4% - 92.6% -
2 86.8% 85.2% 95.3% 95.3%
3 92.7% 89.6% 98.8% 99.1%

Table 2: Accuracy measured on training set for 16-state
ergodic HMMs trained via direct and FIT algorithms.

5s (247 trials) 45s (39 trials)
Order Direct FIT Direct FIT

1 69.2% - 82.1% -
2 75.7% 76.1% 87.2% 89.7%
3 79.8% 79.8% 89.7% 97.4%

Table 3: Accuracy measured on testing set for 16-state er-
godic HMMs trained via direct and FIT algorithms.

4.3 ALR using context and duration HMMs

In this section we experiment with fixed-order, and mixed-
order (context and duration modelling) HMMs. Figure 1
illustrates the categorisation (context and duration orders)
and FIT training dependencies of the different models.

Model 1 is a first-order 16 state ergodic HMM used in the
prior experiments. It serves as a base-line model and all
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Figure 1: Identities and FIT training dependencies (indi-
cated by arrows) of ALR models. C is the context order
and D is the duration order.

other models are extensions of it. The fixed-order model
results (F2 and F3) are also directly imported from this
previous section. The C2 and C3 models, while neglecting
duration modelling ensure that the system “knows” about
respectively 2 and 3 distinct prior states when making a
transition to a next state. The longer history that is being
modelled by maintaining the C values in this way, neces-
sarily makes these models more sensitive to training data
deficiencies. Models D1 and D2 add duration modelling
capabilities to model 1, while C2D2, C2D3, C3D2 and
C3D3 add duration information to the respective models
which they extend. DmCn models were not considered
since they suffer from reduced context order when trained
on repetitive data [2]. We do not suggest that the above
topologies are the only viable ones. Alternative topologies
are the subject of future research.

Model sizes: We find that the number of transition proba-
bilities in the Cn models are considerably larger that the
Fn models investigated. For example, the F3, C3 and
C3D3 models have 2301, 4286 and 9070 transition prob-
abilities respectively. This compares favorably to the di-
rect trained X3 model with 47161 transition probabilities.
Second-order models (F2, C2, D2 etc) exhibit a similar but
less pronounced trend. Each of these different topologies
were designed for different purposes. We suspect that the
growth in the number of transition probabilities of the Cn
models can be attributed to the larger history of states that
it is modelling. The longer such a history is, the greater
the potential number of state combinations will be. When
duration modelling is added to form the CmDn models, it
is done on an already enlarged model, thereby contributing
to a marked growth in the number of parameters.

Classification resultsThe classification accuracy on the
training and test sets are given in Table 4. If we consider
the training set accuracy, we note the added benefit of each

successive FIT extension. The rapid increase in accuracy
of the various context-emphasized models indicates an in-
creasing ability to fit the training data. Tests on an indepen-
dent set of testing data reveal that the pattern of improve-
ment with each new FIT extension in the training data re-
sults is followed. At the context order 2 level (C=2), the
context-emphasized models appear to function very com-
petitively. We suspect that our training database was too
small to sustain the long history span utilized at the C=3
levels. The large difference in accuracy between the train-
ing and testing sets (i.e. specialisation is taking place) for
the C3 family also confirms this. In general models bene-
fit from duration modelling. McNemar significance tests
reveal almost identical results to those obtained in Sec-
tion 4.2. In general the high-order models improve on the
baseline HMM1, while no statistically significant differ-
ences could be detected between the high-order models.

It is safe to conclude that increasing the duration and/or
context orders is indeed beneficial, as long the training
database is large enough to sustain it. The various CmDn
models hold much promise for ALR, but need more test-
ing on larger databases. Although it might seem unfair to
compare results from the simple first-order model to that of
large high-order models, the purpose of these experiments
was to investigate the role of context and duration mod-
elling HMMs, and not to compare models containing an
equal number of parameters.

Due to the general lack of standardised ALR databases,
direct comparison with prior work is difficult. However,
Lund et al. [6] utilize an acoustic-phonetic based scheme
that does not require any transcriptions during training and
can thus be directly compared to our work. On language
pairs from the NIST’95 set, they achieve accuracy rang-
ing from 85.2% to 93.6%. Although based on different
principles, the 97% accuracy that we achieved compares
well with this. Others using phoneme recognition based
systems (thus requiring phoneme transcriptions) have ob-
tained 97.9% [3] and 94.8% [4] on the NIST’94 45s set.
The FIT/ORED approach compares well to these results
and is particularly attractive as it does not require costly
hand transcription of the speech data.

5 Outstanding ALR issues

We view the ALR experiments reported here as as a proto-
typical demonstration of concept. Many necessary refine-
ments are absent from it and there are also several aspects
that require further investigation. In order to expand it into
a full-blown ALR system incorporating many languages,
at least the following should receive attention:

1. A deeper investigation of various high-order HMM
topologies.

2. A thorough investigation of the relationship between



5s (247 trials) 45s (39 trials; NIST’95)
Training Set Accuracy

CtxnDur D=1 D=2 D=3 D=1 D=2 D=3
C=1 1: 83.4% D2: 84.1% D3: 86.4% 1: 92.6% D2: 94.1% D3: 94.7%
C=2 C2: 89.0% F2: 85.2% C2D3: 91.4% C2: 98.5% F2: 95.3% C2D3: 99.1%

C2D2: 90.3% C2D2: 99.1%
C=3 C3: 94.6% C3D2: 95.4% F3: 89.6% C3: 99.7% C3D2: 100 % F3: 98.8%

C3D3: 97.3% C3D3: 100 %
Test Set Accuracy

CtxnDur D=1 D=2 D=3 D=1 D=2 D=3
C=1 1: 69.2% D2: 79.4% D3: 80.6% 1: 82.1% D2: 92.3% D3: 92.3%
C=2 C2: 75.7% F2: 76.1% C2D3: 77.7% C2: 92.3% F2: 89.7% C2D3: 94.9%

C2D2: 78.1% C2D2: 92.3%
C=3 C3: 76.9% C3D2: 76.1% F3: 79.8% C3: 89.7% C3D2: 89.7% F3: 97.4%

C3D3: 76.5% C3D3: 94.9%

Table 4: Training and Testing set classification accuracy for different orders and types of HMM models.

the size of the models and the size of a database suffi-
ciently large to train it is necessary.

3. Interpolation techniques are commonly used in N-
grams applications [3] to mitigate poor training set
size should be investigated.

4. The incorporation of gender has shown to increase ac-
curacy and should thus be investigated.

5. Previous work [5] indicates the usefulness of explic-
itly removing the acoustic component from the resul-
tant score when matching unknown speech to a lan-
guage model. Although our system uses a common
acoustical model for the languages concerned, remov-
ing it altogether from the final matching score should
be investigated.

6 Conclusion

This paper shows that the FIT algorithm is indeed practical
for training large real-life high-order HMMs. It confirms
the benefits over direct training that we found in previ-
ous simulation experiments. The FIT algorithm provides
greater computational efficiency, results in more compact
models and if anything, increases accuracy. We demon-
strated some very promising prospects for implementing
ALR systems that do not need transcriptions. We also
demonstrated techniques that achieve independent control
over context modelling (modelling sequences of consecu-
tive states while ignoring their individual repetitions) and
duration modelling (modelling the duration/repetitions for
which a specific state is active) in high-order HMMs.
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