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Abstract Since they need not be transcribed, this does not necessar-

We present automatic language recognition results usir% pose a problem. From the OGI-8atabase, roughly

. : 0 minutes of free-format English and Hindi speech was
high-order hidden Markov models (HMM) and the recenﬂyavailable as training data. These were the two largest col-

_?_?;ili?]pe(?:%RgzhrAEa?ugﬂﬁégRviggzrrfoizf’r:tzctﬁ;neefﬁfﬁelctions of data available and were therefore used in the
. 9 9 ' experiments. Silence sections in the recordings were re-
ciency and accuracy of pseudo-phoneme context and durr%bved automatically by using an energy criterion. The

&OJMrT;og\?e”rlr::%rT/Zﬁg(;zﬁZ HMMshas V\'/:ell ast f|xe|d order ower in the remainder was normalised to compensate for
bproaches. For a two langua %cording volume. After pre-emphasis, tenth-order LPC-
problem, we show that a third-order FIT trained HMM d delta-cepstra features were calculated from
gives a test set accuracy of 97.4% compared to 89.7% fggpstra an b .
a conventionally trained third-order HMM. A first-order mstlme frames spaced at 16ms intervals. Cepstrall mean
model achieved 82.1% accuracy on the salme problem subtract_lon was used _to compensate for channel variation.
' " For testing data, two independent sets of data were used.
These were 5s segments and the 45s NIST'95 LID set.
1 Introduction Each language model had its own transition probability de-
scription, while one central set of pdfs was referenced col-
In a companion paper [1], we developed theory for efficieriectively by all the language models.
high-order hidden Markov modelling. In this paper we
demonstrate its practical applicability to speech process-
ipg. Phonotactic quelling in automatic language recogng HMM structure and training pro-
tion (ALR) systems is a large and complex model of the in-
terdependence of the phonemes of each language. Because cedure
of the size and complexity of these models, we have chosen o -
this as a suitable field to demonstrate our techniques witH! an application like language recognition, the left-to-
The intention of this paper is to demonstrate the applicdlght HMMs commonly used in speech recognition sys-
bility of high-order HMMs trained using ORED/FIT ap- {€ms are inappropriate as the the HMM can start in any
proach to a practical speech system, not to develop a full§tate and jump to any state as dictated by the language
fledged ALR system. In particular, we compare FIT to contodel. In this work, we use sixteen state ergodic high-
ventional high-order HMM training and we investigate theorder HMMs, The state transition probabilities are selected
effect of specialised context and duration modelling mixed©r first- and fixed-order HMMs as well as mixed-order
order HMMs we have developed. We consider the use #podels that model both “phoneme” context and duration
ergodic high-order HMMs to model languages as this agl]- Fixed ordgr models of_ordet are labeled k i.e. a
proach does not require costly phoneme transcription of tfggcond-order fixed model is labeled F2. Context models

speech data. Details of some other ALR systems may [§&d duration models are labeled @nd Dn respectively.
found in [3, 4, 5, 6]. We also investigate models that implement both context
and duration modelling. These are labeled ab@ mod-

els wheren andm refer to the order of the context and
duration respectively [2]. The ALR system consists of a
bank of such models, each optimised to a specific language.
Our prior work [7] indicated that about 1 hour of speechunknicf)iwg Speer%?n'stm\?vtﬁihid ;0 ?i‘?cg Oft thPeri ”:c\),serli ?nd
was adequate for modelling a language with a first—ordecrJass ed according to which one fits best. Prior work [7]
HMM. Preliminary experiments indicated that the higher- 11he oregon Graduate Institute kindly made the OGI-TS database

order Markov models would need substantially more datavailable to us

2 Database and signal processing




has shown first-order ergodic HMMs which use a common Order | MEM | CPU | Size
set of probability density functions (pdf) for all the lan- 2 69% | 94% | 70%
guages to be modelled significantly enhances robustness. 3 13% | 7% | 5%

All training was done using the Viterbi re-estimation al-

gorithm [8]. Higher-order models were always reduced tdable 1: Comparison of computational requirements and
equivalent first-order form by using the ORED algorithmfinal model sizes for 16-state ergodic HMMs trained via
enabling the use of the first-order re-estimation algorithrglirect and FIT algorithms. The results are expressed as
in all cases. FIT requirements as a percentage of direct requirements.

The Viterbi algorithm includes a matrix that records the op-

timal path between states as a function of time. In a firson independent testing data, however, in all cases the FIT
order HMM system, the product of the number of statetfained models perform similarly or better than the direct
with the number of time frames in the speech segmerifained models. Furthermore, all the FIT trained models
dictates the size of this matrix. To reduce the demandesult in smaller differences between training and testing
on memory, the training sequences were subdivided inget accuracies than those achieved by the direct trained
5s sequences that formed the basic patterns presentednedels. This, combined with the larger models that re-
the system. After training, all transition probabilities lead-sulted from direct training, indicates greater specialisation
ing from the initial state were set to be equal (i.e. 1/16) such models. With the 5s classification trials, a McNe-
to ensure that the model could start in any state with equalar test [9] with a 90% significance level shows all the
probability. high-order models to be more accurate than the baseline
HMM1. Due to the rather small test set, the experiment
based on the NIST'95 45s set (39 trials) could only show
the 3rd-order FIT model (F3) to be more accurate than the
1st-order HMM on a 90% significance level. No statisti-
cally significant differences could be detected between the
direct and FIT trained models. The FIT approach thus ob-
We now compare ALR results for fixed-order modelsains statistically similar results at a significantly reduced
trained using the FIT algorithm (train successively highegomputational cost.

order models) and direct training (order reduction followed

4 Comparison between FIT and di-
rect training

by training). These results will validate results obtained on 5s (2169 trials)| 45s (339 trials)
synthetic data as reported in [1]. FIT trained models are Order| Direct FIT | Direct FIT
labeled F while direct trained models are labelea X 1 83.4% _ 92.6% _
2 86.8% 85.2%| 95.3% 95.3%
3 92.7% 89.6%| 98.8% 99.1%

4.1 Computational requirements

. . Table 2: Accuracy measured on training set for 16-state
The computational costs of the different approaches are = . , o .

. o -ergodic HMMs trained via direct and FIT algorithms.
measured in terms of the number of transition probabili-

ties, memory requirements) and the number of operations

(CPU time) required to process equivalent problems. The 5s (247 trials) | 45s (39 trials)
results are summarised in Table 1. We find that the com- Order | Direct FIT | Direct FIT
putational advantage of the FIT approach becomes signifi- 69.2% ” 32.1% N
cant for third-order models. The final F3 model contained 75.7% 76.1%| 87.2% 89.7%
a compact 2301 transition probabilities compared to the 3 79.8% 79.8%| 89.7% 97.4%

47161 probabilities in the X3 model. These additional

transition probabilities translate directly into CPU time andraple 3: Accuracy measured on testing set for 16-state er-

memory costs. From this it is clear that the FIT algorithnyodic HMMs trained via direct and FIT algorithms.
results in much more compact models, getting more so as

the order increases. This corroborates the results obtained
from synthetic data using this approach [1]. 4.3 ALR using context and duration HMMs

In this section we experiment with fixed-order, and mixed-
order (context and duration modelling) HMMs. Figure 1

We now compare the classification accuracy of the FIT ar{'Hustrates the categorisation (context and duration orders)

direct training approaches. These results are summaris%?ﬁd FIT training dependencies of the different models.

in Table 2 and Table 3. On the training data, the accuModel 1 is a first-order 16 state ergodic HMM used in the
racy of the FIT and direct trained models are comparablerior experiments. It serves as a base-line model and all

4.2 Classification accuracy



successive FIT extension. The rapid increase in accuracy
of the various context-emphasized models indicates an in-
creasing ability to fit the training data. Tests on an indepen-
dent set of testing data reveal that the pattern of improve-
ment with each new FIT extension in the training data re-
sults is followed. At the context order 2 level (C=2), the
context-emphasized models appear to function very com-
petitively. We suspect that our training database was too
small to sustain the long history span utilized at the C=3
levels. The large difference in accuracy between the train-
ing and testing sets (i.e. specialisation is taking place) for
the C3 family also confirms this. In general models bene-
fit from duration modelling. McNemar significance tests
reveal almost identical results to those obtained in Sec-
tion 4.2. In general the high-order models improve on the
baseline HMM1, while no statistically significant differ-
Figure 1: Identities and FIT training dependencies (indiences could be detected between the high-order models.

cated by arrows) of ALR models. C is the context ordey, . . . .
and D is the duration order. [t is safe to conclude that increasing the duration and/or

context orders is indeed beneficial, as long the training
database is large enough to sustain it. The variou®@
other models are extensions of it. The fixed-order mod#&hodels hold much promise for ALR, but need more test-
results (F2 and F3) are also directly imported from thi#g on larger databases. Although it might seem unfair to
previous section. The C2 and C3 models, while neglectingpmpare results from the simple first-order model to that of
duration modelling ensure that the system “knows” abod@rge high-order models, the purpose of these experiments
respectively 2 and 3 distinct prior states when making was to investigate the role of context and duration mod-
transition to a next state. The longer history that is beinglling HMMs, and not to compare models containing an
modelled by maintaining the C values in this way, necegqual number of parameters.

sarily makes these models more sensitive to training dafge 1o the general lack of standardised ALR databases,
deficiencies. Models D1 and D2 add duration modellingjjrect comparison with prior work is difficult. However,
capabilities to model 1, while C2D2, C2D3, C3D2 and nq et al. [6] utilize an acoustic-phonetic based scheme
C3D3 add duration information to the respective modelg, 4t goes not require any transcriptions during training and
which they extend. B.Cr models were not considered .o, thys be directly compared to our work. On language
since thgy suffer from reduced context order when tra'”e&airs from the NIST'95 set, they achieve accuracy rang-
on repetitive data [2]. We do not suggest that the aboygg from 85.29% to 93.6%. Although based on different
topologies are the only viable ones. Alternative t0p°|09'e§rinciples, the 97% accuracy that we achieved compares
are the subject of future research. well with this. Others using phoneme recognition based
Model sizes We find that the number of transition proba-systems (thus requiring phoneme transcriptions) have ob-
bilities in the G» models are considerably larger that theained 97.9% [3] and 94.8% [4] on the NIST'94 45s set.
Fn models investigated. For example, the F3, C3 an@ihe FIT/ORED approach compares well to these results
C3D3 models have 2301, 4286 and 9070 transition prolend is particularly attractive as it does not require costly
abilities respectively. This compares favorably to the dihand transcription of the speech data.

rect trained X3 model with 47161 transition probabilities.

Second-order models (F2, C2, D2 etc) exhibit a similar but

less pronounced trend. Each of these different topologi&s ~ Outstanding ALR issues

were designed for different purposes. We suspect that the

growth in the number of transition probabilities of the C We view the ALR experiments reported here as as a proto-
models can be attributed to the larger history of states thgtpical demonstration of concept. Many necessary refine-
it is modelling. The longer such a history is, the greatements are absent from it and there are also several aspects
the potential number of state combinations will be. Whethat require further investigation. In order to expand it into
duration modelling is added to form therDn models, it a full-blown ALR system incorporating many languages,
is done on an already enlarged model, thereby contributirag least the following should receive attention:

to a marked growth in the number of parameters.

1. A deeper investigation of various high-order HMM

Classification results The classification accuracy on the topologies.

training and test sets are given in Table 4. If we consider
the training set accuracy, we note the added benefit of eacl2. A thorough investigation of the relationship between



5s (247 trials)

45s (39 trials; NIST’95)

Training Set Accuracy

Ctx\Dur D=1 D=2 D=3 D=1 D=2 D=3
c=1 1: 83.4% D2: 84.1% D3: 86.4% | 1:92.6% D2: 94.1% D3: 94.7%
Cc=2 C2: 89.0% F2: 85.2% C2D3: 91.4% C2: 98.5% F2: 95.3% C2D3: 99.1%
C2D2: 90.3% C2D2: 99.1%
Cc=3 C3:94.6% C3D2: 95.4% F3: 89.6%| C3:99.7% C3D2: 100 % F3: 98.8%
C3D3: 97.3% C3D3: 100 %
Test Set Accuracy
Ctx\Dur D=1 D=2 D=3 D=1 D=2 D=3
c=1 1: 69.2% D2: 79.4% D3:80.6% | 1:82.1% D2: 92.3% D3: 92.3%
Cc=2 C2: 75.7% F2: 76.1% C2D3: 77.7% C2: 92.3% F2:89.7% C2D3: 94.9%
C2D2: 78.1% C2D2: 92.3%
C=3 C3:76.9% C3D2: 76.1% F3: 79.8%| C3:89.7% C3D2: 89.7% F3: 97.4%
C3D3: 76.5% C3D3: 94.9%

Table 4: Training and Testing set classification accuracy for different orders and types of HMM models.

the size of the models and the size of a database suffi- International Conference on Speech and Language

ciently large to train it is necessary.
(2]

. Interpolation techniques are commonly used in N
grams applications [3] to mitigate poor training set
size should be investigated.

. The incorporation of gender has shown to increase a3l
curacy and should thus be investigated.

. Previous work [5] indicates the usefulness of explic-
itly removing the acoustic component from the resul-
tant score when matching unknown speech to a Iarr4]
guage model. Although our system uses a common
acoustical model for the languages concerned, remov-
ing it altogether from the final matching score should
be investigated.

[5]

6 Conclusion

This paper shows that the FIT algorithm is indeed practical
for training large real-life high-order HMMs. It confirms
the benefits over direct training that we found in previ
ous simulation experiments. The FIT algorithm provide
greater computational efficiency, results in more compact
models and if anything, increases accuracy. We demon-
strated some very promising prospects for implementing
ALR systems that do not need transcriptions. We als,
demonstrated techniques that achieve independent con
over context modelling (modelling sequences of consecu-
tive states while ignoring their individual repetitions) and
duration modelling (modelling the duration/repetitions for[8]
which a specific state is active) in high-order HMMs.

2
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