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Abstract

We present two powerful tools which allow efficient train-
ing of arbitrary (including mixed and infinite) order hidden
Markov models. The method rests on two parts: an algo-
rithm which can convert high-order models to an equiv- (@)

alent first-order representation (ORder rEDucing), and a H—Q)\‘\// \

Fast (order) Incremental Training algorithm. We demon- : 7N oy
strate that this method is more flexible, results in signif- _ W \fk//\&
icantly faster training and improved generalisation com- o
pared to prior work. Order reducing is also shown to give U

insight into the language modelling capabilities of certain (b)
high-order HMM topologies.

Figure 1: First (a) and second (b) order HMMs indicating
the increased history of state transition dependence of the
1 Introduction latter. The symbof; is the pdf associated with state

Anumber of researchers (e.g. [1, 2]) have noted the potegation, and Section 5 provides quantitative evidence of
tial for, and the computational cost of, high-order hiddeqy,o efficiency of this approach.

Markov models (HMM). Prior work [2, 3] derived second-

order extensions to HMM training algorithms, but their

approaches required new training algorithms for each in- ]

crease in model order. This work is very different in tha? ~High-order HMMs

we are able to show that any high-order model (fixed- and

mixed-order) may be converted to an equivalent first-ordéfirst-order HMMs [1] are characterised by a sefoémit-
model using our ORder rEDucing (ORED) algorithm [5].ting states. Each stafehas an associated probability den-
ORED provides a unifying paradigm for reasoning abouwity function (pdf) denoted ag which quantifies the sim-
HMMs of any order because it makes the relationship beélarity between an input feature vectarandS. States are
tween HMM topology and HMM order explicit. Using coupled by transition probabilities. For first order HMMs,
this insight, HMMs can be designed using higher-ordethe transition probabilities are indicated by the symbl
specifications and then reduced to make its topology eXhis indicates the probability of making a transition to state
plicit using a first-order equivalent model. ORED also al% given that the current state js High-order HMMs state
lows any standard first-order HMM training algorithm totransition probabilities depend on two or more prior states
train and otherwise manipulate arbitrary order HMMs. Thand are characterised by probabilities with three or more
ORED algorithm also provides a powerful opportunity forindices. For a second order HMM,;;, indicates the prob-
efficient training of otherwise computationally intractableability of jumping to statek given that the current state is
high-order HMM systems by Fast Incremental Training and the prior state i& Paths between pairs of states thus
(FIT). Details of the ORED and FIT algorithms can behave multiple transition probabilities, each depending on
found in [5] and [6]. Application of these techniques toprior states. This is illustrated in Figure 1.

automatic language recognition can be found in a comp

) Nhen converting high-order models to lower-order equiv-
ion paper [4].

alents, we avoid ambiguity by indicating the high-order
Section 2 introduces the notion of high-order HMMs. Secmodel transition probabilities with a primaggk) to dis-

tions 3 and 4 outline the ORED and FIT procedures respetinguish them from the corresponding lower-order transi-
tively. Section 4.2 discusses how these can be applied tion probabilities. The pdfs and state transition probabili-
important language modelling issues such as context atids of a given HMM are usually determined from training



Figure 2: A mixed-order left-to-right HMM with a maxi-
mum order of 3. The stippled states (0 and 4) are initi

. 3& re 3: First order equivalent of Figure 1(b). Note that
and terminal null states [5]. Igu ! quiv igure 1(b)

each state transition now has only one transition probability
associated with it.

data using various algorithms such as the Baum-Welch re-

estimation equations [1]. These algorithms can either be . .
generalised to high-order cases, or, as we propose hede, ORED algorlthm overview
the high-order models can be reduced to equivalent first

order models for training. Unfortunately, the number of_. . e
transition probabilities in high-order models grows withf':'rSt'Order trar.15'|t|0n probabilities ".WOIVe only the two
the power of the order of the model. Conventional trains[ates that are joined by them (see Figure 1(a)). In contrast,

. : : ; the second-order dependencewf, on state;, cannot be
ing procedures rapidly become computationall mtractabl.«gI ) LA Tk i ’ .
gp picly P y Héerred from its adjoining states but is only encoded in

due to processor speed and memory constraints. In s . i o
P P y p‘_ e subscripts of the transition probability itself. We now

of these problems, the additional state “memory” assoc . : .
ated with high-order HMMs offer compelling and powerfuI(?’reate a new model W|th's.tates correspondmg o pairs of
modelling capabilities. Ilnked states from the original model, as is illustrated in
Figure 1(b). Each state shares the same pdf as the second
one of the original pair of states does (these are called tied
pdf states). Transition probabilities are inserted between
the states that respectively match the first and the last two
2.1 Fixed, mixed or infinite? subscripts of the transition probability eg. is inserted
between state§, j) and(j, k). This is a twofold Carte-
The length of state sequence memory determines the @ian product of the states involved [3]. Now the indexes of
der of the HMM, and an HMM of given order may containthe states adjoining the second-order transition probability
state transition probabilities that depend on different nunfully describe the subscripts of this transition probability.
bers of prior states. In the case of fixed-order models, allhis effectively means that we can now interpagf, as
state transition probabilities (for a fixed third-order HMM)a first-order transition probability joining statés j) and
are all of the forma;;;. Mixed-order models have state (7, k). By enlarging the number of states in the way we
transition probabilities with different numbers of indicesdid, we were able to reduce effectively the order of the
indicating the different Markov orders within the processmodel by one, without losing any representational capabil-
Figure 2 illustrates a mixed order HMM. In Section 4.2,ty. This simple observation forms the basis of the ORED
we will show how mixed order HMMs can be used foralgorithm. This concept may be extended to redudihg
phoneme duration modelling. order HMMs toN — 1 order HMMs. Recursive applica-

In order to model some characteristics of language (such aan of this procedure can convert models of arbitrary order

phoneme context), we found it necessary to model the S0 first order equivalents. The proper handling of higher

guence of states visited, irrespective of the number of cofpders, initial conditions and the mixed-order models in-

secutive repetitions of each state. This results in an HMI\%OdUC.es quite a few' intrigacies 'to the algorithm that are
of infinite-order (i.e. a special case of a more general clagit evident from the intuitive notion on which it is based.
of infinite-order HMMs) as we now discuss. Some infiniteT ese complexities are dgtalled in [6]. On a practical level,
order HMMs contain special state transition probabilitieé.)RED allows the application of any standard HMM algo-

which depend on the sequence of states visited, indeper hm to any h|gherjorder HMM, thus greatly enhancing
dent of how many times a particular state was visited. F e usefulness of this technology. Alt'hough concerns have
example, the transition probability;;+ is the probabil- een expressed about the effect this increase in the number

ity that the next state will bé, given that the model was of states might have [2], we can show [6] that it does not

in statej for one or more previous time slots and prior tocoenr:;;bute in any way to additional computational require-

entering statg, the state was. The notationj* thus in-
dicates the occurrence of one or mgi®in the subscript. Figure 4 shows a first order equivalent of the mixed-order
This is a powerful tool for phoneme context modelling asnodel illustrated in Figure 2. A little thought will reveal
outlined in Section 4.2. the equivalence of these models.



Figure 5: Duration modelling left to right second-order
HMM with one state skip.

5. Repeat step 2 to train this model. This will refine
the transition probabilities to their required higher-

Figure 4: The first order equivalent of the HMM illustrated ~ order values. Repeating this process trains succes-
in Figure 2. sively higher-order models.

.. This algorithm as described above does not allow the
4 Fast Incremental Trammg training of mixed and infinite order HMMS, however, for
certain specific useful mixed- and infinite-order models,

As already mentioned, high-order HMMs can be vasllyye have formulated extensions to the ORED/FIT algo-
more expensive than their first-order counterparts. Thgnm [6].

processing and memory requirements are serious issues

that can easily place such a model outside the available

computing capacity. Fortunately, the transition structure .2 Mixed-order variants for Ianguage mod-

a high-order HMM is usually quite sparse. Because, prior elling

to training, it may be difficult to determine which tran-

sitions will be redundant, training normally commencedVe address two applications of high-order HMMs to lan-
with all the transitions that are potentially useful. Forguage modelling: phoneme duration and context. While
many problems, considerable training effort is thereforixed order HMMs can be used to model both duration
expended on estimating parameters that will eventually bend context, mixed and infinite order models provide more
come zero. Referring back to Figure 1, it can be seen theéwerful paradigms as we now discuss.

a single transition probability in the lower-order model is ] ] ] ]

simply being replaced by a set of refined probabilities ifPUration modelling: With the following example we want
the higher-order model. Considerable computational effolf lllustrate a topology arising from emphasising the dura-
can be avoided if the training of redundant sets of higheFlon modelling aspects of the model while neglecting the
order probabilities can be eliminated by noting which corcontextual modelling that is not directly involved with the

responding lower-order probabilities are zero. This obsef?0delling of the duration of a state. This type of modelling
vation forms the basis of the FIT algorithm. only involves states with self-loops. In such a state we need

to identify the sets of departing transition probabilities that
share the same destination and involve the same number of

4.1 FIT for fixed-order HMMs repetitions of this state. If all the transition probabilities in
o ) ) ) such a set are constrained to be identical regardless of prior

The FIT training algorithm for fixed order models is nowstates, the resulting model will model the duration of this
outlined: state. Figure 5 illustrates a second-order model constructed
using these rules. Figure 6 shows the first-order equivalent

1. Setup a first-order HMM for the application at hand.(as determined by the ORED algorithm) of Figure 5. Note

2. Run a standard training algorithm (e.g. Baum-Welchthe similarity between this and the model proposed by Fer-
on the first-order model. Non-viable (i.e. zero probaguson [7].
bility) transitions will disappear. Context modelling: Finite (V-th) order HMMs build con-

3. Convert the optimised first-order model to a secondext memory over the prioN states which can severely
order model by expanding the subscripts of the reimit their ability to model things like phoneme context.
maining non-zero transition probabilities with one ex-The use of infinite order HMMs can address this by allow-
tra prior state. These expanded transition probabilitiégg state transition probabilities to be independent of how
are initialised with the value of the lower-order tran-many times a particular state was visited. Figure 7 shows a
sition probability they were extended from. simple context modelling HMM. Note that the probability

of a state transition from state 2 to state 3 is independent

4. Use the ORED algorithm to create a first-order equi , o X
of how many times states 1 and 2 were visited. Figure 8

alent of this model.



generated high-order HMM sources. The number of non-
zero state transition probabilities in the underlying mod-
els, as well as the expected optimal classification perfor-
mancé were thus known. Compared to the known under-
lying model, experiments on the training of a fourth-order
HMM with eight underlying states, the FIT/(conventional)
algorithm revealed: 15%/(1820%) more non-zero transi-
tion probabilities and a 48%/(170%) increase in classifi-
cation error on independent test data. The dramatic in-
crease in non-zero transition probabilities experienced by
the conventional approach indicates the lack of generalisa-
tion compounding the enormous computational cost of this

Figure 6: First order equivalent of the duration modellingnethod. Detailed results for fixed order HMMs are avail-
HMM in Figure 5. Note the similarity to the Ferguson du-able in [5].

ration model [7].

shows the first order equivalent of Figure 7.

Figure 7: Third contextual order left to right HMM with
one state skip. The notatidn’” is used to indicate one or
more occurrences of index

Figure 8: First-order equivalent of Figure 7.

Combined context and duration modelling This ap-

proach also allows both context and duration modelling sj
multaneously, as demonstrated in [4]. Details are available

in [6].

5 Performance and conclusion

The ORED/FIT approach was thus found to result in mod-
els with fewer non-zero state transition probabilities, better
generalisation and better classification performance com-
pared to prior (conventional) training algorithms. The
ORED approach also provides invaluable insight into
the topological properties of a broad class of high-order
HMMs.
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