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Abstract

We present two powerful tools which allow efficient train-
ing of arbitrary (including mixed and infinite) order hidden
Markov models. The method rests on two parts: an algo-
rithm which can convert high-order models to an equiv-
alent first-order representation (ORder rEDucing), and a
Fast (order) Incremental Training algorithm. We demon-
strate that this method is more flexible, results in signif-
icantly faster training and improved generalisation com-
pared to prior work. Order reducing is also shown to give
insight into the language modelling capabilities of certain
high-order HMM topologies.

1 Introduction

A number of researchers (e.g. [1, 2]) have noted the poten-
tial for, and the computational cost of, high-order hidden
Markov models (HMM). Prior work [2, 3] derived second-
order extensions to HMM training algorithms, but their
approaches required new training algorithms for each in-
crease in model order. This work is very different in that
we are able to show that any high-order model (fixed- and
mixed-order) may be converted to an equivalent first-order
model using our ORder rEDucing (ORED) algorithm [5].
ORED provides a unifying paradigm for reasoning about
HMMs of any order because it makes the relationship be-
tween HMM topology and HMM order explicit. Using
this insight, HMMs can be designed using higher-order
specifications and then reduced to make its topology ex-
plicit using a first-order equivalent model. ORED also al-
lows any standard first-order HMM training algorithm to
train and otherwise manipulate arbitrary order HMMs. The
ORED algorithm also provides a powerful opportunity for
efficient training of otherwise computationally intractable
high-order HMM systems by Fast Incremental Training
(FIT). Details of the ORED and FIT algorithms can be
found in [5] and [6]. Application of these techniques to
automatic language recognition can be found in a compan-
ion paper [4].

Section 2 introduces the notion of high-order HMMs. Sec-
tions 3 and 4 outline the ORED and FIT procedures respec-
tively. Section 4.2 discusses how these can be applied to
important language modelling issues such as context and
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Figure 1: First (a) and second (b) order HMMs indicating
the increased history of state transition dependence of the
latter. The symbolfi is the pdf associated with statei.

duration, and Section 5 provides quantitative evidence of
the efficiency of this approach.

2 High-order HMMs

First-order HMMs [1] are characterised by a set ofN emit-
ting states. Each stateS has an associated probability den-
sity function (pdf) denoted asfi which quantifies the sim-
ilarity between an input feature vectorx andS. States are
coupled by transition probabilities. For first order HMMs,
the transition probabilities are indicated by the symbolajk .
This indicates the probability of making a transition to state
k given that the current state isj. High-order HMMs state
transition probabilities depend on two or more prior states
and are characterised by probabilities with three or more
indices. For a second order HMM,aijk indicates the prob-
ability of jumping to statek given that the current state is
j and the prior state isi. Paths between pairs of states thus
have multiple transition probabilities, each depending on
prior states. This is illustrated in Figure 1.

When converting high-order models to lower-order equiv-
alents, we avoid ambiguity by indicating the high-order
model transition probabilities with a prime (a0

ijk) to dis-
tinguish them from the corresponding lower-order transi-
tion probabilities. The pdfs and state transition probabili-
ties of a given HMM are usually determined from training
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Figure 2: A mixed-order left-to-right HMM with a maxi-
mum order of 3. The stippled states (0 and 4) are initial
and terminal null states [5].

data using various algorithms such as the Baum-Welch re-
estimation equations [1]. These algorithms can either be
generalised to high-order cases, or, as we propose here,
the high-order models can be reduced to equivalent first
order models for training. Unfortunately, the number of
transition probabilities in high-order models grows with
the power of the order of the model. Conventional train-
ing procedures rapidly become computationally intractable
due to processor speed and memory constraints. In spite
of these problems, the additional state “memory” associ-
ated with high-order HMMs offer compelling and powerful
modelling capabilities.

2.1 Fixed, mixed or infinite?

The length of state sequence memory determines the or-
der of the HMM, and an HMM of given order may contain
state transition probabilities that depend on different num-
bers of prior states. In the case of fixed-order models, all
state transition probabilities (for a fixed third-order HMM)
are all of the formaijkl . Mixed-order models have state
transition probabilities with different numbers of indices,
indicating the different Markov orders within the process.
Figure 2 illustrates a mixed order HMM. In Section 4.2,
we will show how mixed order HMMs can be used for
phoneme duration modelling.

In order to model some characteristics of language (such as
phoneme context), we found it necessary to model the se-
quence of states visited, irrespective of the number of con-
secutive repetitions of each state. This results in an HMM
of infinite-order (i.e. a special case of a more general class
of infinite-order HMMs) as we now discuss. Some infinite
order HMMs contain special state transition probabilities
which depend on the sequence of states visited, indepen-
dent of how many times a particular state was visited. For
example, the transition probabilityaij+k is the probabil-
ity that the next state will bek, given that the model was
in statej for one or more previous time slots and prior to
entering statej, the state wasi. The notationj+ thus in-
dicates the occurrence of one or morej’s in the subscript.
This is a powerful tool for phoneme context modelling as
outlined in Section 4.2.
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Figure 3: First order equivalent of Figure 1(b). Note that
each state transition now has only one transition probability
associated with it.

3 ORED algorithm overview

First-order transition probabilities involve only the two
states that are joined by them (see Figure 1(a)). In contrast,
the second-order dependence ofa0

ijk on statei, cannot be
inferred from its adjoining states but is only encoded in
the subscripts of the transition probability itself. We now
create a new model with states corresponding to pairs of
linked states from the original model, as is illustrated in
Figure 1(b). Each state shares the same pdf as the second
one of the original pair of states does (these are called tied
pdf states). Transition probabilities are inserted between
the states that respectively match the first and the last two
subscripts of the transition probability e.g.aijk is inserted
between states(i; j) and (j; k). This is a twofold Carte-
sian product of the states involved [3]. Now the indexes of
the states adjoining the second-order transition probability
fully describe the subscripts of this transition probability.
This effectively means that we can now interpretaijk as
a first-order transition probability joining states(i; j) and
(j; k). By enlarging the number of states in the way we
did, we were able to reduce effectively the order of the
model by one, without losing any representational capabil-
ity. This simple observation forms the basis of the ORED
algorithm. This concept may be extended to reducingN -
order HMMs toN � 1 order HMMs. Recursive applica-
tion of this procedure can convert models of arbitrary order
to first order equivalents. The proper handling of higher
orders, initial conditions and the mixed-order models in-
troduces quite a few intricacies to the algorithm that are
not evident from the intuitive notion on which it is based.
These complexities are detailed in [6]. On a practical level,
ORED allows the application of any standard HMM algo-
rithm to any higher-order HMM, thus greatly enhancing
the usefulness of this technology. Although concerns have
been expressed about the effect this increase in the number
of states might have [2], we can show [6] that it does not
contribute in any way to additional computational require-
ments.

Figure 4 shows a first order equivalent of the mixed-order
model illustrated in Figure 2. A little thought will reveal
the equivalence of these models.
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Figure 4: The first order equivalent of the HMM illustrated
in Figure 2.

4 Fast Incremental Training

As already mentioned, high-order HMMs can be vastly
more expensive than their first-order counterparts. The
processing and memory requirements are serious issues
that can easily place such a model outside the available
computing capacity. Fortunately, the transition structure of
a high-order HMM is usually quite sparse. Because, prior
to training, it may be difficult to determine which tran-
sitions will be redundant, training normally commences
with all the transitions that are potentially useful. For
many problems, considerable training effort is therefore
expended on estimating parameters that will eventually be-
come zero. Referring back to Figure 1, it can be seen that
a single transition probability in the lower-order model is
simply being replaced by a set of refined probabilities in
the higher-order model. Considerable computational effort
can be avoided if the training of redundant sets of higher-
order probabilities can be eliminated by noting which cor-
responding lower-order probabilities are zero. This obser-
vation forms the basis of the FIT algorithm.

4.1 FIT for fixed-order HMMs

The FIT training algorithm for fixed order models is now
outlined:

1. Set up a first-order HMM for the application at hand.

2. Run a standard training algorithm (e.g. Baum-Welch)
on the first-order model. Non-viable (i.e. zero proba-
bility) transitions will disappear.

3. Convert the optimised first-order model to a second-
order model by expanding the subscripts of the re-
maining non-zero transition probabilities with one ex-
tra prior state. These expanded transition probabilities
are initialised with the value of the lower-order tran-
sition probability they were extended from.

4. Use the ORED algorithm to create a first-order equiv-
alent of this model.
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Figure 5: Duration modelling left to right second-order
HMM with one state skip.

5. Repeat step 2 to train this model. This will refine
the transition probabilities to their required higher-
order values. Repeating this process trains succes-
sively higher-order models.

This algorithm as described above does not allow the
training of mixed and infinite order HMMS, however, for
certain specific useful mixed- and infinite-order models,
we have formulated extensions to the ORED/FIT algo-
rithm [6].

4.2 Mixed-order variants for language mod-
elling

We address two applications of high-order HMMs to lan-
guage modelling: phoneme duration and context. While
fixed order HMMs can be used to model both duration
and context, mixed and infinite order models provide more
powerful paradigms as we now discuss.

Duration modelling: With the following example we want
to illustrate a topology arising from emphasising the dura-
tion modelling aspects of the model while neglecting the
contextual modelling that is not directly involved with the
modelling of the duration of a state. This type of modelling
only involves states with self-loops. In such a state we need
to identify the sets of departing transition probabilities that
share the same destination and involve the same number of
repetitions of this state. If all the transition probabilities in
such a set are constrained to be identical regardless of prior
states, the resulting model will model the duration of this
state. Figure 5 illustrates a second-order model constructed
using these rules. Figure 6 shows the first-order equivalent
(as determined by the ORED algorithm) of Figure 5. Note
the similarity between this and the model proposed by Fer-
guson [7].

Context modelling: Finite (N -th) order HMMs build con-
text memory over the priorN states which can severely
limit their ability to model things like phoneme context.
The use of infinite order HMMs can address this by allow-
ing state transition probabilities to be independent of how
many times a particular state was visited. Figure 7 shows a
simple context modelling HMM. Note that the probability
of a state transition from state 2 to state 3 is independent
of how many times states 1 and 2 were visited. Figure 8
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Figure 6: First order equivalent of the duration modelling
HMM in Figure 5. Note the similarity to the Ferguson du-
ration model [7].

shows the first order equivalent of Figure 7.
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Figure 7: Third contextual order left to right HMM with
one state skip. The notationk+ is used to indicate one or
more occurrences of indexk.
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Figure 8: First-order equivalent of Figure 7.

Combined context and duration modelling: This ap-
proach also allows both context and duration modelling si-
multaneously, as demonstrated in [4]. Details are available
in [6].

5 Performance and conclusion

We used well-controlled synthetic simulation experiments
to investigate the performance of FIT models relative to
that of the extended/ORED approach [5]. Each data set
consisted of training and testing data drawn from randomly

generated high-order HMM sources. The number of non-
zero state transition probabilities in the underlying mod-
els, as well as the expected optimal classification perfor-
mance1 were thus known. Compared to the known under-
lying model, experiments on the training of a fourth-order
HMM with eight underlying states, the FIT/(conventional)
algorithm revealed: 15%/(1820%) more non-zero transi-
tion probabilities and a 48%/(170%) increase in classifi-
cation error on independent test data. The dramatic in-
crease in non-zero transition probabilities experienced by
the conventional approach indicates the lack of generalisa-
tion compounding the enormous computational cost of this
method. Detailed results for fixed order HMMs are avail-
able in [5].

The ORED/FIT approach was thus found to result in mod-
els with fewer non-zero state transition probabilities, better
generalisation and better classification performance com-
pared to prior (conventional) training algorithms. The
ORED approach also provides invaluable insight into
the topological properties of a broad class of high-order
HMMs.

References

[1] Deller, J.R., Proakis, J.G. and Hansen J.H.L.Discrete
time processing of speech signals. Macmillan, 1993.

[2] Mari, J.-F., Haton, J.-P. and Kriouile A., “Auto-
matic word recognition based on second-order hidden
Markov models”.IEEE Transactions on Speech and
Audio processing, vol. 5 no. 1, pp. 22 - 25, 1997.

[3] He, Y. “Extended Viterbi algorithm for second-order
hidden Markov process”.Proceedings of the IEEE 9th
International Conference on Pattern Recognition, pp.
718 - 720. Rome, Italy, 1998.

[4] Du Preez, J.A. and Weber, DM. “Automatic language
recognition using high-order HMMs”,Proceedings of
the IEEE International Conference on Speech and
Language Processing, 1998.

[5] Du Preez, J.A. “Efficient training of high-order hid-
den Markov models, using first-order representations”.
Computer Speech and Language, vol. 12, pp. 23-39,
1998.

[6] Du Preez, J.A.,Efficient high-order hidden Markov
modelling. PhD Dissertation, University of Stellen-
bosch, South Africa, 1998.
URL: http://dsp.ee.sun.ac.za/reports

[7] Ferguson, J.D. “Variable duration models for speech”.
Proceedings of the Symposium on the Application of
Hidden Markov Models to Text and Speech(editor:
J.D. Ferguson), pp-143-179, Princeton, New Jersey.

1Access to the underlying synthetic models allows the best possible
classification results to be obtained.


