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ABSTRACT
We present new waveform-interpolation coding procedures which
allow perfect reconstruction of the speech signal from the un-
quantized parameter set. Instead of using adaptive parameter
extraction methods, we combine a time warping of the original
signal with nonadaptive parameter extraction methods. The new
coding structure has good performance at low bit rates and pro-
vides convergence to the original waveform with increasing rate.

1. INTRODUCTION
Speech coding algorithms are often classified into waveform
coders and parametric coders.Waveform codersare characterized
by the fact that the mean squared difference between the original
signal and decoded signal can be made arbitrarily small by de-
creasing the quantization error, i.e. by increasing the bit rate. The
termparametric coderstraditionally referred to coders which use
a more sophisticated signal model with parameters which are mo-
tivated by the human speech production mechanism. We define
strictly parametric codersas coders which do not approach the
original signal in a mean squared sense with increasing bit rate.
This implies that the speech quality at infinite bit rate is deter-
mined by the accuracy of the model.

Despite the constraints in quality due to model inadequacies,
strictly parametric coders have been popular at low rates, where
decoded speech quality is low in general. The advantage of para-
metric coders is usually that most of the perceptually relevant in-
formation is concentrated in a low number of parameter signals
which have relatively low bandwidth and which are relatively in-
dependent. However, the constraint of strictly parametric cod-
ing is not always inherent to the speech model. For example,
linear-prediction based analysis-by-synthesis techniques (exem-
plified by CELP [1]) benefit from modeling traditionally associ-
ated with parametric codingand from waveform-coder proper-
ties. The parametric modeling used in these coders leads to high
coding efficiency at low bit rates, while their waveform coding
character means that the original signal can be approached arbi-
trarily closely by increasing the bit rate.

Whereas the benefits of decreasing waveform error with increas-
ing bit rate have been exploited in linear predictive coding, this
has been done neither in sinusoidal coding (e.g., [2]) nor in wave-
form interpolation coding (e.g., [3]) techniques. In the present pa-
per, we demonstrate how the waveform-interpolation procedure
can be modified to include the desirable property of being a wave-
form coder. From another viewpoint, the new procedure can be
seen as a modification of the sinusoidal coding method. The mod-
ified waveform-interpolation technique presented here has the po-

tential to provide good coding performance at both low and high
rates. Based on earlier results with the waveform-interpolation
coder, it is likely that the present paradigm allows coding at state-
of-the-art speech quality for rates above about 1.5 kb/s.

2. PARAMETERS AND ESTIMATION
Voicing implies that the signal is nearly periodic. This has sev-
eral clear advantages in human communication: high efficiency
(loudness versus physical effort) and good perception in back-
ground noise. It also should allow for efficient coding since pe-
riodicity implies redundancy. The coding of unvoiced sounds, on
the other hand, is facilitated by the fact that it can be modeled in
a perceptually accurate manner as colored noise [4]. Based on
this knowledge we can postulate several properties which are de-
sirable for the parameter set (usually sampled at 40 to 200 Hz)
associated with a speech model to be used in coding:
1. Periodic signals result in time-invariant parameter signals.
2. Stationary colored noise results in two classes of parame-

ter signals: time-invariant signals and band-limited noise
signals with a flat pass-band.

3. Small changes in slowly varying parameter signals result in
small perceptual changes.

4. Replacement of noise-like parameter signals by synthetic
noise signals results in small perceptual changes.

5. Unquantized parameter signals give perfect reconstruction.

This list is not exhaustive, but it motivates the choices made in
this paper. The first four properties are particularly relevant for
the coding of stationary signals. The last property is equivalent to
membership of the waveform coder class.

Since an efficient representation of voiced speech is difficult to
achieve, we will focus on the model structure it requires. Par-
ticularly the time dependency of the pitch and the time and fre-
quency dependency of the periodicity level complicate the design
of efficient speech coding algorithms. To deal with these factors,
adaptive parameter estimation techniquessuch as adaptive win-
dow length and peak picking [2] or adaptive window length and
placement and circular pitch-cycle alignment [3] have been used.
In general, the adaptive procedures used for parameter estimation
in low rate coders are not amenable to perfect reconstruction.

The method proposed in this paper can be interpreted as amodi-
fication of the input signalin combination withnonadaptive pa-
rameter extraction. The signal is modified so that nonadaptive
analysis becomes effective. This concept is similar to general-
ized analysis-by-synthesis, where the original signal is modified
to facilitate analysis-by-synthesis coding [5].



The adaptation of the input signal consists of time warping the
signal such that the pitch period is constant. This has significant
advantages. A fixed fundamental frequency facilitates the design
of subband coders with bands lined up with the speech harmonics,
providing slowly evolving parameters for voiced speech. Further-
more, the constant pitch track removes confusion between noise
and the effects of time-varying pitch. Without time warping,
conventional analysis methods often lead to a misinterpretation
of signal components as noise-like for signals with time-varying
pitch. This effect is strongest at high frequencies.

2.1. Pitch Normalization
We perform the time warping on the linear prediction residual of
speech, consistent with independent evolution of the vocal tract
and its excitation signal (particularly the pitch). While the equiv-
alence of linear prediction residual and vocal-tract excitation is
is strictly speaking incorrect, it appears to suffice for our pur-
pose. Moreover, this approach allows the usage of established
techniques for the encoding of the prediction filter specification.

Good adaptation of the signal, i.e. good time warping is crucial
for good performance of our paradigm. A first step towards this
goal is a reliable pitch estimation procedure (we use the method
described in [6], updated on 20 ms intervals). It is beneficial to
refine this track for analysis purposes. However, the synthesis
pitch does not require such refinement and can, in general, be
transmitted at a 50 Hz rate. An accurate time warp from timet to
a modified time scale� of constant pitch periodP must satisfy

�(t) = �(t� p(t)) + P; (1)

wherep(t) is the maximum average cross-correlations(t)s(t �
p(t)) over a neighborhood oft. Equation 1 does not specify the
warpingwithin the pitch-cycle waveform. The recursive applica-
tion of equation 1 may result in undesirable warping within the
pitch cycle because of numerical inaccuracies and/or inaccurate
initialization. Thus, we used a discrete version of the nonoptimal
warping� 0(t� p(t)=2)) = P=p(t) with � 0(t) = d�(t)

dt
.

We use an approximation of band-limited interpolation to obtain
a regular sampling on the� scale and the same procedure to in-
vert this process. These mappings are inconsistent but in practice
performance is good. Using a 12-coefficient approximation of the
sinc function andP = 128, we obtained a segmental signal-to-
noise ratio of 60 dB for our mappings from and to� over a speech
data base 13.9 s in length (6.8 s female and 7.1 s male).

2.2. Representation of the Signal
Pitch normalization of the signal is relevant for voiced speech,
which is nearly periodic (time-varying spectral content and pitch).
A natural representation for the pitch normalized signal is

s(�) =

k=P�1X
k=0

ak(�) exp(
j2�k�

P
): (2)

As is illustrated in figure 1, it is convenient to consider each of
the terms of this summation to be the output of a filterhk(�) of a
filterbank.ak(�) is then simply the demodulated bandk signal:

ak(�) = exp(
�j2�k�

P
)

Z
1

�1

s(� � �
0)hk(�

0)d� 0: (3)

This representation is good if thehk(�) are ideal bandpass fil-
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Figure 1: (a) Pitch-synchronous power spectrum.
(b) Power spectrum of one term.
(c) Demodulated power spectrum.

ters. Theak(� ) are constant for periodics(� ) and nearly flat
lowpass signals for colored stationary noise. Furthermore, the
perceptual sensitivity of the modulation amplitudesak(�) to an
incorrect pitch normalization is low; the low frequency modula-
tions (k small), to which the human ear is most sensitive, will
be least affected, and thus still easy to code. This contrasts with
sampled time domain (whethert or � ) representations where the
inefficient quantization resulting from inaccurate pitch normal-
ization affects the full frequency band.

If the analog filters are not ideal, a periodic signal of unity pe-
riod will result in spectral peaks at a frequency spacing of2�=P ,
which is undesirable for coding. A white noise input signal will
result in a power spectrum ofak(�) with its shape determined by
the filter transfer function.

Next, we consider the case of sampled signalss(n) and digital
filters hk(n) (n 2 Z are samples of� ). If the filters are ideal
bandpass filters, the situation is identical to that in the case of ana-
log filters. However, if the filters are not ideal, the sampling rate
affects the nature of the signal representation. If the filterbank
outputs are downsampled, a periodic input will result in aliasing
of harmonics. However, for the specific case where the filter out-
puts arecritically sampled, this aliasing is not detrimental: in this
case the aliasingfolds all spectral peaks exactly onto the dc (zero)
frequency. The filter outputs,a(mP ), m 2 Z, are then constant
for a periodic input, as desired.

The behavior of the output of the critically sampled filterbank has
a simple time-domain interpretation. For a steady-state periodic
input, each bandpass filter has an output which is either periodic
or constant. By sampling the output signal pitch-synchronously,
we are guaranteed to obtain a constant output.

Thus, the frequency resolution of the subbands of the filterbank
is not important when the pitch-period contour of the signal is
normalized accurately and the filterbank is critically sampled. If
the pitch normalization is not perfect, it is advantageous to have a
filterbank with good suppression of the aliased components even
for critical sampling. In summary, it is desirable both to have
high-frequency resolution filters and critical sampling.

Whereas the sampled� domain is redundant in terms of sam-
ples, the combined set of modulation amplitudes may not be so.
If the synthesis filterbank is constructed with expansion vectors
with finite time support, then it is seen thatthe number of signif-
icant modulation amplitudes is approximatelyp(t) at � = �(t)
(wherep(t) is measured in samples at the original sampling rate
and “significant” means not approximately zero). The total num-
ber of significant samples in all bands of a critically sampled FIR
filter bank operating on� over an interval approximates the num-
ber of samples of the original signal over that interval.



2.3. The Pitch-Synchronous Spectrum
It is useful to consider the relation between the spectra of the
Fourier-series coefficients and the time-warped signal spectrum,

S(!) =

Z
1

�1

s(t(�)) exp(�j!�)d�

=

n=N�1X
n=0

An(! � 2�n=P ); (4)

whereAk(!) is the Fourier transform ofak(�). Equation 4 shows
a simple relation between the pitch-synchronous spectrum and
the spectra of the evolving Fourier-series coefficients. It shows
that, for high frequency resolution filters, zooming in on har-
monick of the pitch-synchronous spectrum essentially provides
the spectrum of the corresponding modulation amplitudeak(� ).

3. PRACTICAL METHODS
3.1. The Block DFT
From the previous section we conclude that we want to have a
critically-sampled perfect-reconstruction filterbank with regular
frequency spacing of the subbands. A simple filterbank satisfying
these conditions is the block discrete Fourier transform (DFT):

ak(mP ) =
X
n

s(n)wr(n�mP )W�kn
; (5)

s(n) =
1

P

X
m

P�1X
k=0

ak(mP )wr(n�mP )W kn
; (6)

wherewr(n) is a lengthP rectangular window andW = ej2�=P.

Interpreting the filterbank as an expansion into basis vectors (dis-
crete functions)wr(n)W

kn, we note that these basis vectors have
significant discontinuities at their support boundaries. As a result,
the perceived reconstruction accuracy of the speech signal is sen-
sitive to small changes in the parameter signalsak(mP ). The
low frequency resolution of the block DFT also results in percep-
tual sensitivity since this implies that pitch normalization errors
result in strongly deleterious aliasing effects.

We note in passing that the original waveform interpolation
coder [3] uses an analysis procedure which is similar to the block
DFT, but which operates on the unwarped signal. Straight appli-
cation of the method implies that mismatches in the analysis and
synthesis pitch tracks result in discontinuities of the signal at the
block boundaries. These problems are avoided in [3] by adaptive
window placement, alignment, and triangular windowing during
synthesis. This results in good performance at low rates but pre-
vents perfect reconstruction.

3.2. The Gabor Transform
The critically sampled block DFT has significant disadvantages
resulting from the rectangular windowing. We would like to de-
fine a critically sampled filterbank with a basis which consists
of a smoothly windowed exponentials. The Balian-Low theorem
theorem (e.g., [7]) shows that such a basis cannot have both good
frequency resolution and good time resolution. Thus, we relax
the critical-sampling requirement. As penalty we obtain redun-
dant sampling and detrimental effects due to aliasing even when
the pitch normalization is accurate. A tradeoff between aliasing
and the oversampling rate exists.

Transforms into frame coefficients (we use the mathematical
meaning of “frame”, e.g., [7]), i.e. into coefficients of an over-
complete expansion, where the frame consists of windowed ex-
ponentials, are called Gabor transforms. The Gabor transform is

bk(mN) =
X
n

s(n)w(n�mN)W�kn
; (7)

s(n) =
1

N

X
m

P�1X
k=0

bk(mN)g(n�mN)W kn
; (8)

wherew(n) and g(n) are the analysis and synthesis windows
andP=N is the oversampling factor. (The definition includes the
block DFT.) For the experimental results reported below,g(n) is
a Hamming window (this choice means the frame is not tight)
of length2P andP=N = 2. Thus, quantization of abk(mN)
results in a smooth speech distortion over an interval of2P . This
smoothness is desirable, but can cause smearing at speech onsets.
We compute the dual frame (inverse transform) using a method
which renders it maximally similar to the original frame [8].

It is interesting to note that, for a given oversampled analysis fil-
terbank, it is possible to determine an optimal synthesis filterbank
which uses noise shaping to minimize the effect of the quantiza-
tion error on the subband signals [9]. At least in principle, this
should allow for improved performance.

3.3. The MLT
The Balian-Low theorem shows that the design of a critically
sampled filterbank based on windowed exponentials is impossi-
ble with satisfactory time and frequency resolution. However,
it is possible to define a critically sampled filterbank based on
smoothly windowed cosines. We have considered the commonly
used modulated lapped transform (MLT) of the following form
(e.g., [7]):

ck(mP ) =
X
n

s(n)w(n�mP )fk(n�mP ); (9)

s(n) =
X
m

P�1X
k=0

ck(mP )w(n�mP )fk(n�mP );(10)

where the windoww(n) is symmetric, has a support of two pitch
cycles, and satisfiesw(n)2+w(P�n�1)2 = 1; n = 0; � � � ; P�
1 (we used a half sine wave) and where

fk(n) =

r
2

P
cos(

(2n� P + 1)(2k + 1)�

4P
): (11)

Ignoring the windowing effects, the coefficientsck(mP ); k =
0; � � � ; P � 1 describe the signal component with even symmetry
of pitch cyclem and the component with odd symmetry of pitch
cyclem + 1 (or vice versa). As in our Gabor-transform imple-
mentation, quantization of the subband signals results in speech
distortions spread over a two pitch-cycle interval.

Figure 2 shows the frequency domain interpretation of the MLT
filterbank for an artificial signal. Each term in the summation of
equation 9 corresponds to the sum of the outputs of two symmet-
rically located band-pass filters. Demodulation and addition of
these terms gives the modulation amplitude of each cosine term.

While it generally performs well for coding purposes, the MLT
has some disadvantages. First, while the orthogonal basis func-
tions of equation 10 are smoothly windowed, they have odd sym-
metry in one half. This can have a similar effect to a discontinuity



of the basis functions and result in discontinuities in the speech
due to the quantization process. The second disadvantage of the
MLT is that there is no notion of phase. This is disadvantageous
since it is well-known that the human auditory system is relatively
insensitive to the phase of the pitch cycle waveform. In the origi-
nal waveform interpolation coder the phase of the rapidly evolv-
ing component of the waveform is replaced by a random phase
without introducing significant distortion [3]. We have not found
a computationally simple manner to implement phase randomiza-
tion in the MLT representation, both since the subband samples
provide information about successive pitch cycles and since there
is no simple relation between these samples and the correspond-
ing magnitude and phase spectra.
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Figure 2: (a) Pitch-synchronous power spectrum.
(b) Power spectrum of odd term.
(c) Demodulated power spectrum of odd term.

3.4. Experiments
In our experiments, we evaluate the convenience of the repre-
sentation for quantization. It is easier to create an effective quan-
tizer when the subband signals are of low bandwidth and centered
around dc. We define the rms mean bandwidth measure [10] for
the subband signalak(t) (note: we use the regular time scale) to
be

B =

r
(

Z
jAk(!)j2!2d!)=(

Z
jA(!)j2d!): (12)

The bandwidths for each subband channel, averaged over 11 sub-
bands in low frequency and high frequency ranges for 13.9 s of
speech (6.8 s female, 7.1 s male), are shown in Table 1. For com-
parison, we note that the mean bandwidth of the characteristic
waveforms of the conventional waveform interpolation coder [3]
with adaptive analysis, was 42.9 Hz, for the 11 subband channels
in the low frequency range.

Table 1: The mean bandwidth of the subbands.
GT MLT

Blow(Hz) 23 25
Bhigh(Hz) 86 41

Our results show that in terms of bandwidth the Gabor transform
and MLT perform similarly. The frequency resolution of the Ga-
bor transform is sufficient to suppress most of the undesired alias-
ing effects. We conclude that the MLT has as its main advantage
critical sampling, whereas the Gabor transform represents the sig-
nal in terms of windowed exponentials facilitating a perceptually
useful magnitude-and-phase interpretation.

4. CONCLUSION
In the period 1975-1985, subband filters were frequently used for
speech coding (e.g., [11]). Research along these lines ultimately
led to perfect reconstruction filterbanks [12]. However, while the
sophistication of the filterbanks increased, subband coders were

eclipsed by linear-prediction based coders in speech applications.
This can largely be explained by the fact that straight applica-
tion of filterbanks cannot exploit speech periodicity. In this paper
we have shown that this disadvantage of subband coders can be
eliminated by time warping the speech signal.

Application of a perfect reconstruction filter bank to the pitch
normalized speech signal results in a representation suitable for
coding at both high and low rates. The overlapping of the
frame (or basis) vectors of the synthesis filterbank is equiv-
alent to the interpolation of modulation amplitudes of earlier
waveform-interpolation coders. However, in the present perfect-
reconstruction schemes, the analysis has been changed signifi-
cantly from that of the earlier waveform-interpolation coders.
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