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ABSTRACT tential to provide good coding performance at both low and high

We present new waveform-interpolation coding procedures whidlates. Based on earlier results with the waveform-interpolation

allow perfect reconstruction of the speech signal from the ureoder, itis likely that the present paradigm allows coding at state-

guantized parameter set. Instead of using adaptive parametdithe-art speech quality for rates above about 1.5 kb/s.

extraction methods, we combine a time warping of the original

signal with nonadaptive parameter extraction methods. The new

coding structure has good performance at low bit rates and pro- 2. PARAMETERS AND ESTIMATION

vides convergence to the original waveform with increasing rateyoicing implies that the signal is nearly periodic. This has sev-

eral clear advantages in human communication: high efficiency

(loudness versus physical effort) and good perception in back-
1. INTRODUCTION ground noise. It also should allow for efficient coding since pe-

Speech coding algorithms are often classified into waveforiodicity implies redundancy. The coding of unvoiced sounds, on

coders and parame’[ric codeWaveform coderare characterized the other hand, is facilitated by the fact that it can be modeled in

by the fact that the mean squared difference between the origirfalPerceptually accurate manner as colored noise [4]. Based on

signal and decoded signal can be made arbitrarily small by déhis knowledge we can postulate several properties which are de-

creasing the quantization error, i.e. by increasing the bit rate. Tis&able for the parameter set (usually sampled at 40 to 200 Hz)

termparametric codersraditionally referred to coders which use associated with a speech model to be used in coding:

amore sophisticated signal model with parameters which are md-. Periodic signals result in time-invariant parameter signals.

tivated by the human speech production mechanism. We defing Stationary colored noise results in two classes of parame-
strictly parametric codersis coders which do not approach the  ter signals: time-invariant signals and band-limited noise
original signal in a mean squared sense with increasing bit rate. signals with a flat pass-band.

This implies that the speech quality at infinite bit rate is deter-5.

, Small changes in slowly varying parameter signals result in
mined by the accuracy of the model.

small perceptual changes.

Despite the constraints in quality due to model inadequacies}. Replacement of noise-like parameter signals by synthetic
strictly parametric coders have been popular at low rates, where noise signals results in small perceptual changes.

decoded speech quality is low in general. The advantage of parg: Unquantized parameter signals give perfect reconstruction.
metric coders is usually that most of the perceptually relevant ijrpig s is not exhaustive, but it motivates the choices made in

formation is concentrated in a low number of parameter sign fiis paper. The first four properties are particularly relevant for

which have relatively low bandwidth and Wh.iCh are re'a“"‘?'y In- he coding of stationary signals. The last property is equivalent to
dependent. However, the constraint of strictly parametric co nembership of the waveform coder class.

ing is not always inherent to the speech model. For example,
linear-prediction based analysis-by-synthesis techniques (exe®ince an efficient representation of voiced speech is difficult to
plified by CELP [1]) benefit from modeling traditionally associ- achieve, we will focus on the model structure it requires. Par-
ated with parametric codingnd from waveform-coder proper- ticularly the time dependency of the pitch and the time and fre-
ties. The parametric modeling used in these coders leads to highency dependency of the periodicity level complicate the design
coding efficiency at low bit rates, while their waveform codingof efficient speech coding algorithms. To deal with these factors,
character means that the original signal can be approached aradaptive parameter estimation techniqueesh as adaptive win-
trarily closely by increasing the bit rate. dow length and peak picking [2] or adaptive window length and

form interpolation coding (e.g., [3]) techniques. In the present paFrhe method proposed in this paper can be interpretechasia

per, we demonstrate how the waveform-interpolation proceduffecation of the input signah combination withnonadaptive pa-
can be modified to include the desirable property of being a waveameter extraction The signal is modified so that nonadaptive
form coder. From another viewpoint, the new procedure can kanalysis becomes effective. This concept is similar to general-
seen as a modification of the sinusoidal coding method. The moited analysis-by-synthesis, where the original signal is modified
ified waveform-interpolation technique presented here has the pio-facilitate analysis-by-synthesis coding [5].



The adaptation of the input signal consists of time warping t
signal such that the pitch period is constant. This has signific 3g
advantages. A fixed fundamental frequency facilitates the des
of subband coders with bands lined up with the speech harmor% 20
providing slowly evolving parameters for voiced speech. Furth:
more, the constant pitch track removes confusion between ni
and the effects of time-varying pitch. Without time warping b
conventional analysis methods often lead to a misinterpretat -m 0 m -m 0 m -m 0 m

of signal components as noise-like for signals with time-varyiiny.. 1: (@) Pitch h frequency .
pitch. This effect is strongest at high frequencies. igure L: (E)e;)PcIJVSeissypnecctiznmogfg)nogvteerrr?lpec rum.

(c) Demodulated power spectrum.

(CY (b) (©

2.1. Pitch Normalization

We perform the time warping on the linear prediction residual ofers. Thea, (r) are constant for periodig() and nearly flat
speech, consistent with independent evolution of the vocal traghwpass signals for colored stationary noise. Furthermore, the
and its excitation Signal (pal’ticularly the p|tCh) While the eqUiV-perceptua| Sensitivity of the modulation amp"tudasfr) to an
alence of linear prediction residual and vocal-tract excitation igcorrect pitch normalization is low; the low frequency modula-
is strictly speaking incorrect, it appears to suffice for our purtions (& small), to which the human ear is most sensitive, will
pose. Moreover, this approach allows the usage of establishpd |east affected, and thus still easy to code. This contrasts with
techniques for the encoding of the prediction filter specificationsampled time domain (whetheor 7) representations where the
a'ipefficient guantization resulting from inaccurate pitch normal-

Good adaptation of the signal, i.e. good time warping is cruci gation affects the full frequency band.

for good performance of our paradigm. A first step towards thi

goal is a reliable pitch estimation procedure (we use the methaglthe analog filters are not ideal, a periodic signal of unity pe-
de.SCHbe_d in [6], updated qn 20 ms intervals). It is beneficial tﬁod will result in spectral peaks at a frequency Spacingﬁ)/fP’
refine this track for analysis purposes. However, the synthesjghich is undesirable for coding. A white noise input signal will

pitch does not require such refinement and can, in general, b&sult in a power spectrum af, (7) with its shape determined by
transmitted at a 50 Hz rate. An accurate time warp from tinee  the filter transfer function.

a modified time scale of constant pitch period® must satisfy ) ) o
Next, we consider the case of sampled signdis) and digital

T(t) = 7(t — p(t)) + P, (1) filters hi(n) (n € Z are samples of). If the filters are ideal
bandpass filters, the situation is identical to that in the case of ana-

) . . log filters. However, if the filters are not ideal, the sampling rate
p(t)) over a neighborhood at Equation 1 does not specify the 4tects the nature of the signal representation. If the filterbank

warpingwithin the pitch-cycle waveform. The recursive applica-q ,y0t5 are downsampled, a periodic input will result in aliasing
tlpn of equation 1 may result in ur_]deS|rab|e_ warping V‘_"th'n ey harmonics. However, for the specific case where the filter out-
pitch cycle because of numerical inaccuracies and/or inaccurgigys arerritically sampled this aliasing is not detrimental: in this
initialization. Thus, we used a discrete verS|0nd0ftthe nonoptimal,ce the aliasinfplds all spectral peaks exactly onto the dc (zero)
warping 7’ (t — p(t)/2)) = P/p(t) with 7' (t) = 45 frequency The filter outputsa(mP), m € Z, are then constant

We use an approximation of band-limited interpolation to obtaitflOr a periodic input, as desired.

a regular sampling on the scale and the same procedure to in-The pehavior of the output of the critically sampled filterbank has
vert this process. These mappings are inconsistent but in practig&imple time-domain interpretation. For a steady-state periodic
performance is good. Using a 12-coefficient approximation of thgyput, each bandpass filter has an output which is either periodic

sinc function and” = 128, we obtained a segmental signal-to-or constant. By sampling the output signal pitch-synchronously,
noise ratio of 60 dB for our mappings from andrtover a speech e are guaranteed to obtain a constant output.

data base 13.9 s in length (6.8 s female and 7.1 s male).

wherep(t) is the maximum average cross-correlatigin)s(t —

Thus, the frequency resolution of the subbands of the filterbank
292 Representation of the Signal is not |_mportant when the pltch_-perlod c_onto_u_r of the signal is
pitch lizati t the sianal is rel ‘f iced normalized accurately and the filterbank is critically sampled. If
itch normaization ot the signal IS relevant for voice Sp?ed{he pitch normalization is not perfect, it is advantageous to have a
which is nearly perlod_lc (tlme-varylng spectra_l cont(_ant an_d pItCh)filterbank with good suppression of the aliased components even
A natural representation for the pitch normalized signal is for critical sampling. In summary, it is desirable both to have
k=P—1 high-frequency resolution filters and critical sampling.

_ j2wkT o
s(m) = ai(7) exp( P )- (2 Whereas the sampled domain is redundant in terms of sam-
k=

ples, the combined set of modulation amplitudes may not be so.
As is illustrated in figure 1, it is convenient to consider each off the synthesis filterbank is constructed with expansion vectors
the terms of this summation to be the output of a filte(r) of a with finite time support, then it is seen ttithe number of signif-

o

filterbank.ay () is then simply the demodulated bahgignal: ~ icant modulation amplitudes is approximatelft) at r = 7(t)
(wherep(t) is measured in samples at the original sampling rate
_ —j2nkT o , Nt and “significant” means not approximately zero). The total num-
ax(7) = exp(——F%—) /_oo s(r—=m)h(m)dr. () par of significant samples in all bands of a critically sampled FIR

filter bank operating om over an interval approximates the num-
This representation is good if thig. (7) are ideal bandpass fil- ber of samples of the original signal over that interval.



2.3. The Pitch-Synchronous Spectrum Transforms into frame coefficients (we use the mathematical
It is useful to consider the relation between the spectra of th®eaning of “frame”, e.g., [7]), i.e. into coefficients of an over-

Fourier-series coefficients and the time-warped signal spectrungomplete expansion, where the frame consists of windowed ex-
ponentials, are called Gabor transforms. The Gabor transform is

S(UJ) = [Oo S(t(T)) eXp(_jUJT)dT bk (mN) — Z S(TL)’UJ(Tl _ mN)W_kn, (7)
= ; A, (w — 27n/P), 4 o) = % 3 2’: be(mN)g(n — mNYW*" (8)

m k=0

whereAy, (w) is the Fourier transform afy. (7). Equation 4 shows wherew(r) and g(n) are the analysis and synthesis windows
a simple relation between the pitch-synchronous spectrum anci1 win gin . y YNINEs

) . : - andP/N is the oversampling factor. (The definition includes the
the spectra of the evolving Fourier-series coefficients. It shovxi3

that, for high frequency resolution filters, zooming in on har-ﬁOCk DFT.) For the experimental results reported belgiu) is

monic k of the pitch-synchronous spectrum essentially provide‘:%1 Hamming window (this choice means the frame is not tight)

- : : of length2P and P/N = 2. Thus, quantization of &,(mN)
the spectrum of the corresponding modulation ampliigle-). results in a smooth speech distortion over an intervalff This

smoothness is desirable, but can cause smearing at speech onsets.

3. PRACTICAL METHODS We compute the dual frame (inverse transform) using a method
3.1. The Block DFT which renders it maximally similar to the original frame [8].

From the previous section we conclude that we want to have|gjs interesting to note that, for a given oversampled analysis fil-
critically-sampled perfect-reconstruction filterbank with regulagerbank, it is possible to determine an optimal synthesis filterbank
frequency spacing of the subbands. A simple filterbank satisfyinghich uses noise shaping to minimize the effect of the quantiza-
these conditions is the block discrete Fourier transform (DFT): tion error on the subband signals [9]. At least in principle, this

kn should allow for improved performance.
ap(mP) = Z s(n)w,(n —mP)W ™", (5)

n

3.3. The MLT

P-1

s(n) = 1 Z Z ax(mP)w,(n — mP)W*", (6) The Balian-Low theorem shows that the design of a critically
P sampled filterbank based on windowed exponentials is impossi-

ble with satisfactory time and frequency resolution. However,
wherew, (n) is a lengthP rectangular window ani/’ = &/>"/P. it is possible to define a critically sampled filterbank based on

smoothly windowed cosines. We have considered the commonly

Interpreting the filterbank as an expansion into bqsis vectors (di§sed modulated lapped transform (MLT) of the following form
crete functionsju,. (n)W*", we note that these basis vectors hav?te_g_ [7)):

significant discontinuities at their support boundaries. As a result,
the perceived reconstruction accuracy of the speech signal is sen- ¢k (mP) = Z s(n)w(n —mP)fx(n — mP), 9)
sitive to small changes in the parameter signalénP). The n

low frequency resolution of the block DFT also results in percep- pP-1
Z Z ck (mP)w(n — mP) fr,(n — mP)(10)

m k=0

tual sensitivity since this implies that pitch normalization errors s(n)

result in strongly deleterious aliasing effects. . k—0

We note in passing that the original waveform interpolatiorwhere the windoww(n) is symmetric, has a support of two pitch
coder [3] uses an analysis procedure which is similar to the blogi/cles, and satisfies(n)’ +w(P—n—1)* =1,n=0,---, P—
DFT, but which operates on the unwarped signal. Straight appli-(we used a half sine wave) and where

cation of the method implies that mismatches in the analysis and 2 (2n— P +1)(2k + 1w

synthesis pitch tracks result in discontinuities of the signal at the fi(n) = P cos( 1P )- (11)

bl.OCk boundaries. The_se problems are avoided _in (3] .by adapti\fSnoring the windowing effects, the coefficients(mP),k =
window placement, alignment, and triangular windowing durin .., P —1 describe the signal component with even symmetry

synthesis. This results in_ good performance at low rates but prg’f .pitch cyclem and the component with odd symmetry of pitch
vents perfect reconstruction. cyclem + 1 (or vice versa). As in our Gabor-transform imple-

mentation, quantization of the subband signals results in speech
3.2. The Gabor Transform distortions spread over a two pitch-cycle interval.

The c_ritically sampled black DF.T has_significant disa_dvantage,gigure 2 shows the frequency domain interpretation of the MLT
resulting from the rectangular windowing. We would like to de-

) - ) ) . - -~ filterbank for an artificial signal. Each term in the summation of
fine a critically sampled filterbank with a basis which consist ation 9 corresponds to the sum of the outputs of two symmet-
of a smoothly windowed exponentials. The Balian-Low theorerpic lly located band-pass filters. Demodulation and addition of

theorem (e.g., [7]). shows that suc_h a basis Cf”‘“”m have both 9% 2se terms gives the modulation amplitude of each cosine term.
frequency resolution and good time resolution. Thus, we relax

the critical-sampling requirement. As penalty we obtain redunwhile it generally performs well for coding purposes, the MLT
dant sampling and detrimental effects due to aliasing even whéias some disadvantages. First, while the orthogonal basis func-
the pitch normalization is accurate. A tradeoff between aliasingons of equation 10 are smoothly windowed, they have odd sym-
and the oversampling rate exists. metry in one half. This can have a similar effect to a discontinuity



of the basis functions and result in discontinuities in the speedtlipsed by linear-prediction based coders in speech applications.
due to the quantization process. The second disadvantage of Tt@s can largely be explained by the fact that straight applica-
MLT is that there is no notion of phase. This is disadvantageou®n of filterbanks cannot exploit speech periodicity. In this paper
since itis well-known that the human auditory system is relativelye have shown that this disadvantage of subband coders can be
insensitive to the phase of the pitch cycle waveform. In the origieliminated by time warping the speech signal.

nal waveform interpolation coder the phase of the rapidly evolv- =~ . . .

ing component of the waveform is replaced by a random phadiPplication of a perfect reconstruction filter bank to the pitch
without introducing significant distortion [3]. We have not foundnorr_nallzed speec_h signal results in a representatlon_swtable for
a computationally simple manner to implement phase randomiz oding at bOtr_‘ high and low rates. Th_e qverlappln_g of the
tion in the MLT representation, both since the subband sampl me (or ba_s,ls) vectors of the synt_heS|s fllt_erbank IS equiv-
provide information about successive pitch cycles and since thefeEnt 1o the interpolation of modulation amplitudes of earlier

is no simple relation between these samples and the correspoiffiveform-interpolation coders. However, in the present perfect-
ing magnitude and phase spectra. reconstruction schemes, the analysis has been changed signifi-
(@ (b)

© cantly from that of the earlier waveform-interpolation coders.
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