GAUSSIAN DENSITY TREE STRUCTURE
INA MULTI-GAUSSIAN HMM-BASED
SPEECH RECOGNITION SYSTEM

J. Smonin, L. Delphin-Poulat & G. Damnati

France Télécom - CNET - DIH/DIPS
Technopole Anticipa
2, Avenue Pierre Marzin, 22307 Lannion - France

ABSTRACT

This paper presents a Gaussian density tree structure usage
which enables a computational cost reduction without a
significant degradation of recognition performances, during a
continuous speech recognition process.

The Gaussian tree structure is built from successive Gaussian
density merging. Each node of the tree is associated with a
Gaussian density, and the actual HMM densities are associated
to the leaves. We propose then a criterion to decide whether a
node belonging to a high level in the tree should be expanded or
not. The expansion means that the likelihood is evaluated with
Gaussian densities associated with a low level node if the
likelihood computed at the high level is not precise enough.

This Gaussian tree structure is evaluated with a continuous
speech recognition system on a telephone database. The
expansion criterion alows a 75 to 85% computational cost
reduction in terms of log-likelihood computations without any
significant word error rate increase during the recognition
process.

1. INTRODUCTION

The efficiency of a continuous speech recognition system
depends on the trade-off between recognition performances and
computational cost. In order to improve recognition
performances, the number of acoustic parameters is often
increased with multi-Gaussian output distributions in a classical
Hidden Markov Model (HMM). A Gaussian density splitting
procedure is used to increase the number of Gaussian densities
for each distribution during the parameters training [1].
However, the computational cost increases with the number of
acoustic parameters.

An efficient way to reduce computational cost is to decrease the
total number of log-likelihood evaluations for each observation.
A Gaussian selection method succeeding to a Gaussian density
clustering may be applied [2].

An other way to reduce computational cost is the use of a
Gaussian density tree structure [3]. A clustering algorithm was
proposed in [3] to build a tree structure. Then, during the
recognition process, the likelihood was only calculated for the N
most likely densities at each level. In this paper, we propose a
binary Gaussian tree building algorithm, and a tree search

method allowing to calculate log-likelihood during the Viterbi
decoding from only two levelsin the tree.

Hence, the paper is organized as follows:

First, the study aims to use a Gaussian density merging
technique to build a Gaussian density tree structure. Here, a
bottom-up clustering strategy is applied to build a binary tree by
successive Gaussian densities merging. Indeed, Gaussian
components clustering of multi-Gaussian distributions is a
classical way to tie density parameters [4].

Then, we propose a way to use this tree structure during the
speech recognition process. Two levels are useful in the tree:
the lower level corresponding to initial Gaussian densities and a
higher level. We define a criterion to decide which node
associated to a Gaussian density should be used for log-
likelihood computation. The aim is to obtain equivalent speech
recognition performances with alower computational cost.

2. GAUSSIAN TREE STRUCTURE
BUILDING

We choose a bottom-up strategy to build a binary Gaussian
density tree structure.

2.1. Gaussian TreeBuilding Algorithm

Successive merging of Gaussian densities allow a binary tree to
be built. Indeed, a parent node represents the result of the
merging of two Gaussian densities representing the two child
nodes into a single Gaussian density. Gaussian parameters
associated with a parent node are defined by merging formulas
in the next paragraph. Successive merging of Gaussian densities
associated with parentless tree nodes are applied to build parent
nodes until the tree root node.

The binary Gaussian tree structure building algorithm is then:

e« The low level is defined by nodes associated
with actual HMM Gaussian densities. This level
is actually formed by the leaves of the tree.

e Until the tree root node, different levels are built
with following principles :
- merging concerns only parentless nodes,
- a Gaussian density associated with a parent
node created at a given lepetan not be
merged at the same leyeivith another density,



- the distance between two Gaussian densities for each level, all nodes at a level (here the low) are not
associated with two child nodes must be lower necessarily merged because of the third principle of the binary
than an upper bound, at each level, to alow a tree building algorithm.

merging between these two densities.

This Gaussian density tree is the result of successive merging of
HMM Gaussian densities.

2.2. Gaussian Density Merging

The HMM output distribution for a frame X[1] at time 1 related
to atransition is given by:

B (X[t = Max_{c,N(X[t]; W, Z)}

where N(.;}) Z) is a Gaussian density with a mean vectoap

diagonal covariance matr, , and ¢ the Gaussian component

weight. NG is the number of Gaussian components of the multi- O O
Gaussian distribution B.

A clustering strategy is used to merge Gaussian densities. Iﬂlgurel: Gaussian density tree structure with a high level

each step of the building algorithm, the closeness of all pairs @}ullet) and low level _(b0|d ring), apd where each parent node is
Gaussian densities is evaluated in order to achieve tH& result of the merging of two child nodes.

appropriate merging. N(.;;p) and N(.; y, ,) denote two
Gaussian functions, with,jand g mean vectorsy, and X,

diagonal covariance matrices, to which and f acoustical After the Gaussian density tree building, only high level and low

frames have been associated during the training corpus. -IJ é(el nodes are used during the recognition process. Indeed, log-
distance between these two functions is measured as i lihood evaluated with a Gaussian density associated to high

decrease in the likelihood of the corresponding training s ?erl n_ode .][na%/_ bg er!c’“g_h forl_kd?sc?k:jantG Iog-I_lkellhood
observation after merging [5]. If d is the acoustic spac stlmatlon,_t:_t IS ensn%/_ Ils uln |”ey. de au55|fanh t:ee
dimension, the distance D is given by: structure with its two specific level allows a decrease of the log-

likelihood computations.

d d d
D=-n.3 log(©,)-n.3 log(d,) + (n+n) .3 log(o) 3. GAUSSIAN TREE STRUCTURE USAGE

i=1 i=1 i=1
where &) = (O—%i)(lsisd)} (@) = (Ogi)(lsisd)' ® = (O—iz)(lsisd) is the DURING THE VITERBI DECODING
diagonal parameters vector of the covariance matrix resulti

. e problem to solve during the Viterbi decoding is to obtain
from the merging.

good recognition performances with a Gaussian density tree
If these two Gaussian functions are merged, the resultifgructure.

function has a number of frames equal to the sum of the number . .

of frames associated to the functions that are merged. %1- Gaussian Tree UsageAIgorlthm

parameters |ando? after a weight normalization, are estimatedDuring the recognition process, a beam search strategy is

by: applied [6] . That means that only log-likelihood for Gaussian
n=n/(n+n) density associated with active model transitions are estimated.
m=n/(n+n)
M=yt
o7 :n1'0%i+nz'0§i+n'1'nz-(”n'pz)z

Recall that the aim is the efficient use of the multi-Gaussian tree
structure to decrease the number of log-likelihood evaluations
considering emission distributions and observations. Therefore,
we choose two particular levels in the tree. First, a high level is
2.3. Gaussian Tree Structure Description defined in the Gaussian tree structure, corresponding to an a
priori chosen number of nodes, i.e. a percentage of the total

This building algorithm produces a tree structure which can fimber of initial Gaussian densities. The low level corresponds
described as follows. to leaves of the tree.

A tree node at levep, TN(p, n, W, %), is associated with a During the Viterbi decoding, for each frame, a maximum is
Gaussian density defined by classical Gaussian densiyaluated among the different high level nodes log-likelihoods.
parameters, i.e. weight n, mean vector p and covariance matrifen, the nodes of this high level for which the log-likelihood is
z. close to this maximum are expanded. This expansion to their

. . . . . orresponding low level nodes allows a more precise evaluation
In Figure 1, a Gaussian density tree structure is charactenzed% P 9 P

a low level and a high level. Moreover, this example shows tha

Yhe log-likelihood.



The agorithm may be described as follows for each frame X[t] :  determine a maximum MLL over the log-likelihood for the high

- ) ) . level nodes allowing to compute the threshold LLT.
* Log-likelihood evaluation of Gaussian densities

associated with a high level node.

« Log-likelihood threshold (LLT) estimation for MLL (X} A) :1<'\|ﬂ3|)\(/| (Iog(PAXHTN(p, N, Ko Z)))
high level nodes which determine high level -
nodes to be expanded.

e If a low level node is a descendant of a high LLT (X}, A)=MLL ({X}, A) +%|09(Mh/M|)
level node which has to be expandt@n log-
likelihood for the Gaussian density associated to
the low level descendant must be evaluagiss,
the previously estimated high level node log-
likelihood is used for the Gaussian density
associated to the low level nodes.

o is the number of free parameters subject to estimation.
Gaussian density parameters are mean vector and diagonal
covariance matrix parameters. log(P({X}|TN(n, . %))
represents the log-likelihood evaluated for thenkde at thep"

tree level associated with the Gaussian density, N, )u

If the log-likelihood estimated at a high level node is greater

than LLT, this high level node must be expanded. That means

that its low level child nodes need an accurate log-likelihood
LL1 LL2 estimation with initial Gaussian density parameters.

The proposed criterion allows to expand a number of nodes
which increases as the total number of high level nodes
decreases. This is coherent with the fact that, the less nodes are
used, the less precise are the log-likelihood evaluations, the less

restrictive should the criterion be. Another property deduced
O from the MDL criterion is that the delta between the log-
LL11 LL12 EL2 4Ll2 =L2 L2 likelihood maximum evaluated at the high level and LLT is not

function of the log-likelihood maximum but of the total number
Figure 2: Example of a Gaussian density structure usage duried high and low level nodes.

the Viterbi decoding with log-likelihood estimation (LLN)
associated to each node. 4. EXPERIMENTS

This tree structure reduces the number of log-likelihood

Figure 2 means that only 4 Gaussian densities, associatedeygluations to be computed. The approach is evaluated using a
bold nodes, are used during log-likelihood estimation in theontinuous speech recognition system over a human-machine
recognition process for this example. Indeed, only the left nodalogue speaker-independent telephone database [8].

of the high level is expanded. Four log-likelihood estimations L.

with the tree structure are required during the Viterbi decoding-1. Training and Test Databases

(2 at the high level and 2 at the low level) instead of 6 lo

likelihood estimation. gThe training corpus for the task-independent part consists of

about 700 short sentences recorded by hundred of speakers

P : calling from different regions of France. This telephone database
3.2. Criterion for Node Expandlng contains almost all the French diphones. Moreover, a task-

The criterion allows to expand a high level tree node. It consiségpendent part is made of 5451 sentences containing 26111
in determining a threshold LLT over the likelihood estimatioryvords recorded by speakers dialoging with AGS dialog system.
which applies to each high level node as described above. \Wie AGS dialog system vocabulary contains 876 words.

propose a criterion derived from the Minimum DescrlptlonAn evaluation of the system is achieved on a task of voice

Length [7]. This criterion is used to select nodes which have goervices directory inquiry about weather forecasts and

be expanded during the Viterbi decoding. The length is fore"’}nployment. A telephone database with 724 sentences

recognition process the likelihood estimated for an observatig ntainin 4 words i in The speech recoanition
and a HMM with multi-Gaussian distribution. Enta g 358 ords is obtained, P 9

system used is obviously speaker-independent.

This threshold is evaluated as follows : . . .
4.2. Gaussian Tree Structureand Criterion

Let X denotes the observation sequeigehe parameters of the Evaluation

model corresponding to the high level, Me number of low
level nodes and Mthe number of high level nodes. WeThe evaluation of the Gaussian density tree structure consists in
speech recognition tests with an a priori high level. This level



has a specific number of nodes in the tree. The node expansion
with the previously described criterion is applied at many levels
of the tree to check the criterion efficiency.

The three tables below present the evaluation results in terms of
word error rate and computational cost reduction. This
computational cost reduction is evauated by means of the
number of log-likelihood computations using a tree structure
(Gaussian density associated with a high level node included)
compared to the number of log-likelihood computations using
only actual Gaussian densities, i.e. associated with the low level
node.

The first experiment (Table 1) involves a total number of 3210
Gaussian densities in the HMM. This case corresponds to a
single Gaussian component for each Gaussian distribution.

HLN || 3210 1402 817 440 220 55
WER || 24.6% | 25.6% | 25.5% | 25.5% | 25.9% | 25.8%
CCR 31.3% | 59.0% | 73.9% | 75.3% | 42.9%

Table 1: word error rate (WER) and computational cost
reduction (CCR) with a specific number of high level nodes
(HLN) (1 component per distribution).

A first noticeable point is that the word error rate never
decreases significantly (95% confident interval). A second point
is a maximum computational cost reduction of 75.3% for the
number of log-likelihood estimations.

Other evaluations (Tables 2 & 3) are achieved with a total
number of Gaussian densities multiplied by 2 and 4. These cases
correspond to a number of Gaussian components by distribution
equal to respectively 2 and 4.

HLN || 6243 2952 1852 1060 574 73
WER || 22.6% | 23.4% | 23.6% | 22.8% | 22.0% | 22.9%
CCR 20.1% | 50.0% | 70.0% | 79.5% | 46.3%

Table 2: word error rate (WER) and computational cost
reduction (CCR) with a specific number of high level nodes
(HLN) (2 components per distribution).

HLN || 11915 | 4056 2436 1377 751 195
WER|] 21.6% | 21.3% | 22.1% | 21.8% | 21.0% | 21.4%
CCR 43.8% | 66.0% | 79.1% | 84.0% | 66.7%

Table 3: word error rate (WER) and computational cost
reduction (CCR) with a specific number of high level nodes
(HLN) (4 components per distribution)..

In terms of computational cost reduction, the tree structure
enables an important reduction of about 80%. Moreover, the
property of no significant word error rate increase is confirmed
(95% confident interval).

Also, we observe a dight word error rate decrease which we can
compare with previous multi-Gaussian densities merging study
[1]. Indeed, Gaussian density merging with multi-Gaussian
distributions (2, 4 or 8 components by distribution) allows word
error rate improvement if the total number of Gaussian densities
isdivided by 2.

Finally, for the three evaluations, there is an optimum for the
number of high level nodes which is between 6% and 9% of the
total number of Gaussian densities.

5. CONCLUSION

Experiments show a 75 to 85% computational cost reduction in
terms of log-likelihood evaluation without any significant
increase of word error rate. This evaluation with different tota
number of Gaussian density shows the efficiency of the
proposed criterion.

Moreover, we observe that reducing the number of Gaussian
densities when the number of Gaussian components per
distribution is more than one, may improve the word error rate.
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