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ABSTRACT" influences (kind of microphone, bandwidth and dynamic range
reduction, electrical and acoustical noise, reverberation, etc).

Regarding speaker identity in forensic conditions, several _ o o
factors of variability must be taken into account, as peculiar  IN this sense, delimiting the problem of speech variability,
intra-speaker variability, forced intra-speaker variability or  together w_nh__analyzmg the quantitative mfl_uence of this
channel-dependent external influences. Using ‘AHUMADA'SPeech variability on the results of speakeogaition systems
large speech database in Spanish, containing several recordfgy '€ad to an indispensable and comprehensive approach to
sessions and channels, and including different tasks for 1f#yensic speaker recognition.

male spgakers, automatic speaker verification experiments g, evaluating the influence of some of these variability
accomplished. factors, ‘AHUMADA'’ speech database [3, 5, 6] has been used.

Due to the inherent non-cooperative nature of speakers #PMme examples of the variability factors included in
forensic applications, only text-independent recognizers afffUMADA corpus are: In situ recordings and telephone
likely to be used. In this sense, a GMM-based verificatiofPeech; read texts at different speech rate; read speech versus
system has been used in order to obtain quantitative resuRBOntaneous speech; different microphones and telephone
Maximum likelihood emation of the models is performed, hand;ets, or inter-session variability in six different recording
and LPC-cepstra, delta- and delta-delta-LPCC, are used at #&8SIONS.

parameterization stage. The present paper is organized as follows. Section 2 describes

With this baseline verification system, we intend to determindtHUMADA" sp eech corpus. Section 3 presents the
how some variability sources included WHUMADA’ affect ~ recognition system employed and the five different verification
speaker identification. Results including speaking rat@XPeriments that have been carried out. Section 4 analyzes the

influence, single- and multi-session training and cross-chanri&sults previously shown. And, finally, some conclusions are
testing are presented when likelihood-domain normalization f§ached in Section 5.

lied.
appie 2. ‘AHUMADA’ SPEECH CORPUS
1. INTRODUCTION ,
2.1. Design of the Database

It is becoming increasingly usual to find audio physical traces

(telephone calls, recorded tapes, security sllmmee Tasks The enrolled speakers were requested to utter the
recordings, etc.) in situations in which people commit a criméollowing: a) 24 isolated digits; b) 10 digit strings consisting of
In this sense, it is essential to find reliable methods that allogn digits each; ) 10 phonologically and syllabically balanced
the association of an unknown voice sample with a knowwiterances of 8-12 word length; d) 1 phonologicaly and
person identity. Speaker Rmmition is a characterization Syllabicaly balanced text, of about 180 words (more than 1
process in which people claim to be identified by their voicegninute of duration), read at a normal speaking rate; €) Two
Anyway, voice identification, specially in forensic approachedepetitions of the previous fixed text, asking the speakers to
must take into account signal varilétly, which incorporates to read it at afast and at a slow speaking rate; f) 1 specific text,

the identification process an additional level of complexity [1]different from speaker to speaker and from session to session,
for each speaker; g) More than 1 minute of spontaneous

In this context, coping with forensic identification impliesspeech, asking every speaker to describe (avoiding long pauses
dealing with speech variability [4, 6]. Regarding speakegnd hesitations) whatever they wanted.

identity, several factors of variability must be taken into

account: i) Peculiar intra-speaker variability (manner ofPhonological and Syllabic Balance. Tasks c) and d) have been
speaking, age, gender, inter-session variability, dialectgipecifically designed in order to reproduce the frequency of
variations, emotional condition, etci)) Forced intra-speaker appearance of phonemes and syllabic schemes, mostly found in
variability (Lombard effect, external-influenced stressspoken Castilian Spanish [7]. The selected |exicon corresponds

cocktail-party effect). iii) Channel-dependent externalto the most usual in Spanish. The ‘standard’ frequency of
appearance (from now on called “Reference”) used in the

design phase was measured over an oral corpus of more than
20,000 words.
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Recording sessions. Six recording sessions were established.
Sessions 1, 3 and 5 were in situ recorded in a quiet studio-like
room and supervised by a trained operator. In each of these in
situ recordings, two different input channels (microphones)
were simultaneously used. The notation used to specify both
microphones in each case is MICn_1 and MICn_2, were n
corresponds to one of the three possible sessions.

Time Interval between Sessions. Following, it can be found
the time intervals between the first in situ session and the rest
of them: a) Session 2 (telephone): 73% of recordings were
done within 15 days interval from session 1. b) Session 3 (in
situ): 80% of recordings were done between 20 and 40 days
after session 1. ¢) Session 4 (telephone): 73% of recordings
were accomplished in atime interval of 15 to 50 from session
1. d) Session 5 (in situ): The minimum interval between
session 1 and session 5 is 30 days. 77% of them were acquired
between 40 and 80 days after session 1. €) Session 6 (tel ephone
and microphone): The minimum time interval of session 6
recordings is 30 days after session 1. 78% of speech material
was recorded between 40 and 80 days after session 1.

2.2. Technical Featuresand Audio
Equipment

Recording Microphones. The relation of microphonesisa s
follows: MIC1 1, MIC3_1 and MIC5_1 correspond to the
same microphone, namely SONY ECM-66B, lapel
unidirectional electret type, at about 10 cm. from the speaker
mouth. MIC1 2 is an AKG D80S dynamic cardioid
microphone, placed on a desk at about 30 cm. from speaker.
MIC3 2 is an AKG C410-B head-mounted dynamic
microphone. MIC5 2 is a low-cost Creative Labs desk
microphone for PC sound-card applications.

Telephone Handsets. In sessions 2, 4 and 6, conventional
telephone line was used to collect the data. In session 2, every
speaker was making a phone call from the same telephone,
namely T2_1, in an internal-routing call. In session 4, speakers
were requested to make a local call from their own home
telephone, T4_1, trying to search a quiet environment (they
were asked to be alone in a closed room). In session 6, a local
call was made from a quiet room, using 10 randomly selected
standard handsets (Reynolds, 1997a), T6_0to T6_9.

Recording-Room Acoustics. A quiet room was selected to
accomplish the recordings of sessions 1, 3, 5. No anechoic
chamber or acoustic cabin was used, as it was desired to have
real-environment recording conditions (in terms of
reverberation), athough maintaining low noise levels. To
avoid undesired room reverberation, several acoustic panels
were placed around the desk where recordings were performed.
An equivalent noise level of only 27 dBA was measured, and
the upper limit for the reverberation time in a third-octave
band analysis was 0.48 sec.

Signal-to-Noise Ratio. We have specificaly calculated
Signal-to-noise ratio (SNR) as the logarithmic ratio between
RMS power of the speech signal and RMS power of the noise.
For noise, here we understand the non-speech part of the
analyzed segment. For speech, continuously-speaking

segments of at least 3 sec. have been selected in order to
calculate the RM'S power of the whole segment as RM S power
of speech. After the application of the high-pass FIR filter
designed to reject the low components (under 65 Hz.) of the
noise present, we get an average SNR value of 40.1 dB, for 10
randomly selected speakers and tasks through all the
microphone and tel ephone speech.

Speech Intelligibility. In our study, Rapid STI, namely
RASTI (Steeneken, 1985), has been measured. RAST| measure
reduces to 9 values the original 98 STI values. These 9 values
are 4 modulation frequencies for the octave band centered at
500 Hz. and 5 modulation frequencies for the octave band
centered at 2 kHz. It is assumed that RASTI values over 0.75
are equivalent to excellent intelligibility. Six different points of
the room were randomly selected in order to determine RASTI;
the values obtained cover a range from 0.73 to 0.81. RASTI
values were obtained using a Briel & Kjeer RASTI type 3361
measuring equipment.

3. THE OVERALL VERIFICATION
SYSTEM

3.1. System Description

In order to perform some speaker recognition tests over the
available data, a speaker verification system has been used [6].
As we wanted to evaluate text-independent verification results,
Gaussian Mixture Models (GMM) have been used [8]. Tests
have been accomplished over a subset of (randomly selected)
25 speakers from the total number of 104 available speakers.
All studio-recorded speech material used for training and
testing has been down-sampled to 8 kHz. (from the original
sampling frequency of 16 kHz.). Cepstral features and their
derivatives have been used taking analysis frames of 30 ms.
every 15 ms., with Hamming windowing and pre-emphasis
factor of 0.97 are used as input to the system. For both training
and testing, silences longer than 0.8 s. have been removed. All
25 speakers were used as claimants for their corresponding
models and as impostors for the rest of speaker models.

Likelihood-Domain Normalization of Scores. As the density
at pointX (input sequence) for all speakers other than the true
speaker,S, is frequently dominated by the density for the
nearest reference speaker, we have applied the following
normalization criterion [2]:
logL(X) =logp(X|S=S,) = max logp(X|S)
50

ref S£S8
c
whereS means claimed speaker model.

Speaker verification rates. Balance between false rejection
error and false alarm errors is searched, so equal error rate
(EER) for each speaker is computed, and average EER through
all speakers for each case is presented in the next section.

3.2 Speaker Verification Experiments

Experiment 1: Channel effect varying parameterization. In
this first test, 40 secs. of speech from task d) (fixed read text)
for each speaker have been used in the training stage. All



speech used in this training stage has been acquired from
channel MIC1_1. Different feature vectors have been aso
used, namely cepstral coefficients derived from LPC analysis
(LPCC), and their first and second derivatives, A- and AA-
cepstral coefficients. In thisway, 3 different models have been
trained for each speaker: 1 model with 10 LPCC, 1 model with
10 LPCC+ALPCC and 1 model with 10 LPCC+ALPCC+
AALPCC.

In the testing stage, speech utterances from task d) have also
been used, but using now channel MIC1 2 (same session,
second channel). Results in Figure 1 show how microphone
mismatch and derivative coefficients affect speaker
verification results as afunction of test utterance duration.

EER(%)

—o—LPCC
——LPCC+delta
5.1 —4A—LPCC+delta+delta

5 sec.

Figure 1: Speaker verification resultsin terms of EER. Models
trained with 40 s. read speech from MICL_1. Testswith 5, 10
and 15 s. of read speech from MIC1_2. Results also show the
improvements when using first and second derivative
coefficients.

Experiment 2: Influence of changesin speaking rate. In this
experiment, the influence of speaking rate on our recognition
system is measured. In the training phase, models were
generated with 40 sec. of read speech at a normal speaking rate
(task d), using 10 LPCC+ ALPCC.

At the testing stage, speech utterances from task €) were
selected, which means that read speech at both a fast and a
slow speaking rate has been used. Figure 2 shows the results of
this verification experiment, showing the effect of mismatch
speaking rate between training and testing.

EER(%) —o—Task d), fast

18 —{1—Task d), slow

1 sec.

Figure 2: Speaker verification results, when testing is
accomplished using read speech at both fast and slow speaking
rate, and training considers only normal read speaking rate.

Experiment 3: Effect of multi-session training. This
experiment concerns to the evaluation of the influence of
single-session training versus multi-session training when
multiple sessions are available in speaker identification tests.
In this sense, results when only session 1 (40 sec.) is used for
training and session 5 used for recognition are compared with
testing in these same conditions when training is accomplished
in sessions 1 and 3 (20 sec. from each session). It is important
to note that all the microphones involved in this experiment 3
are dwaysthe same (MIC1_1, MIC3_1 and MIC5_1).

Figure 3 shows the results of this comparative experiment,
when 10 LPCC+ ALPCC are used as input features.

EER(’
(%) —O—Train 1, test 5
Sty —O—Train 143, test 5
adze L — 7 o

0 T .1

5 sec. 10 sec.

Figure 3: Speaker verification rates showing comparative
analysis between single-session trained models (session 1) and
multi-session trained models (session 1 and 3). Testing is
accomplished over the same speech utterances, selected from
session 5.

Experiment 4. Channel compensation through multi-
session training. In this experiment, the training phase is
identical to that accomplished in Experiment 3, thus obtaining
single-session (session 1) and multi-session (sessions 1 and 3)
models for each speaker.

For testing, in this case, speech utterances from session 5 have
been used. Nevertheless, in this case, these testing utterances
were obtained from MIC5_2, while training utterances came
from MIC1_1 and MIC3_1. Results presented in Figure 4 show
single- and multi-session training behavior facing microphone
changesin testing phase.

0,
EER(%) —o—train 1, test 5

——train 1+3, test 5
D

0 T T 1
5 sec.

Figure 4: Verification resultsin terms of EER when training is
doneinasingle- (session 1, MIC1_1) or multi-session manner
(session1and 3, MIC1_1 and MIC3_1), and testing isrealized
with speech material from session 5 and microphone MIC5_2.

Experiment 5: Multi-session and cross-channel training.
The train phase has been accomplished as follows: 20 sec. from



MICL1_ 1 plus 20 sec. from MIC3 2, both using task d)
utterances, and 10 LPCC+ ALPCC features.

For the verification process, results have been obtained from
utterances using MIC5 2 and also from MIC1_2. Figure 5
shows the scores obtained in terms of the EER.
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Figure 5: Speaker verification results, when multi-session and
cross-channel training isdone (MICL1_1 and MIC3_2). Testing
phase has been carried out with utterances from MIC5_2 and
MICL 2.

4. EVALUATION OF SPEAKER
VERIFICATION RESULTS

As Experiment 1 illustrates, training and testing in channel
mismatch conditions provoke degradation in verification
results. The length of the testing utterance improves results
significantly, as well as the use of first and second derivative
cepstral feature vector. From the worse case (5 sec. length,
only 10 LPCC) to the best one (15 sec., 10 LPCC+ ALPCC+
AALPCC) EER is reduced by 50%, which is a remarkable gain,
particularly taking into account that these are factors that in
many cases can be voluntarily selected.

Experiment 2 shows that speaking rate is not a decisive factor
causing degradation in verification results, and only a small
influenceis observed.

On the contrary, Experiment 3 shows the enormous influence
of multi-session training on verification results. When only
Session 1 is used for training, and testing is accomplished in
Session 5, EERs varying from 3.9% to 2.4% are found.
However, when training is done considering both Session 1 and
3, results are drastically reduced to 0.6% to 0.1%.

Experiment 4 also shows interesting results, specifically that
multi-session training is effective not only in multi-session
testing, but also in channel compensation: EER decreases from
5.5% to 1.9% on MIC5_2 when training includes not only
MICL 1, but also MIC3 1.

Finaly, Experiment 5 confirms the effectiveness of multi-
session training in channel normalization, as similar results are
obtained in channel MIC1_2 as in MIC5_2, when training is
done using MIC1_1 and MIC3_ 2. Training with different
session and microphones consistently improves results on
other sessions and other microphones.

5. CONCLUSIONS

Speech variability is one of the dominant questionsinvolved in
speaker identification, specially when applied to the forensic
field. In this contribution, some of these variability factors
have been quantitatively analyzed, determining their objective
influence over automatic systems.

Roughly, it can be said that channel compensation and multi-
session training are two of the most outstanding factors, in
terms of their effect over speaker verification results.
Specifically, some of the experiments conducted show that
multi-session training has beneficial effects on channel
compensation.

On the other hand, factors like speaking rate (fast / normal /
slow) do not seem to be specialy important in terms of their
influence on the recognition rates.
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