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ABSTRACT

Recurrent phone substrings that are characteristic of a language
are a promising technique for language recognition.  In previous
work on language recognition, building anti-models to
normalise the scores from acoustic phone models for target
languages, has been shown to reduce the Equal Error Rate
(ERR) by a third.  Recurrent substrings and anti-models have
now been applied alongside three other techniques (bigrams,
usefulness and frequency histograms) to the NIST 1996
Language Recognition Evaluation, using data from the
CALLFRIEND and OGI databases for training.  By fusing
scores from the different techniques using a multi-layer
perceptron the ERR on the NIST data can be reduced further.

1. INTRODUCTION

Our language recognition system consists of five techniques,
including recurrent substrings [1], whose outputs are then fused.
The following sections describe the theory behind each of these
techniques and then describe the experiments and results
obtained.

2. THEORY

2.1 Acoustic Models

Our language recognition system uses separate phone
recognisers for each target language.  Each acoustic phone
model, within each recogniser, is a three state Hidden Markov
Model (HMM) with left to right topology.  Multivariate
Gaussian distributions with continuous mixture densities are
used and separate models are built for male and female
speakers.  Where language recognition is implemented by
verification of multiple hypotheses, there are two classes of
data.  The first class is target languages which can be modelled
accurately during training.  However, the second class can come
from any other language and can not be modelled explicitly.  A
general model is therefore built, using Bayes theorem, to
normalise the score of a language being verified [2].  A general
model is built for each target language using the following
approach.  The acoustic models representing a target language

are used to transcribe training data taken from other languages.
A second set of models is then built from these transcriptions.
Each acoustic model then has associated with it a new model
called its anti-model.  These anti-models are used to model the
second class of data.  Linear Discriminant Analysis (LDA) is
then used to generate final sets of acoustic models and anti-
models for each target language.

2.2 Bigrams

Bigram models are built from the transcriptions produced by the
phone recognisers for each target language.  For each recogniser
separate bigram models are built from training data taken from
the current language of interest and also from each of the other
languages of interest.  The bigram statistics are smoothed by
using a linear interpolation of unigram and bigram counts,
similar to that used in [3].

2.3 Recurrent Substrings

Recurrent phone substrings that are characteristic of a language
are generated recursively by growing shorter substrings and
testing for significance.  The test compares the rates of
occurrence of a substring in training data from a target language
and a sample of other languages.  A substring may be a rare
event but of high utility whenever it occurs, so a Poisson
significance test which is valid even for small counts is used.  A
score inferred from the test statistic is associated with each
substring and used for language verification, differing from the
approaches taken in [4] and [5].  We consider longer n-grams
(trigrams up to pentagrams) that are assumed to occur relatively
infrequently and independently of each other, so that they can
be modelled as a Poisson process with an occurrence rate O .
Unigrams and bigrams are excluded because their occurrences
tend not to obey a Poisson process.  The significance test used
is based on the hypothesis that the occurrence rate O  is the
same for two streams of data (a target language and a sample of
other languages) but is unknown.  Substrings that are highly
significant by this test are then used for language verification.
The test is similar to one described in [6].  Suppose for a
particular substring there are 1�  (random variable) occurrences
in the training data for a target language, with total length W�
and 1�  occurrences for other languages, with total length W� .



W�  and W�  are actually gross phone counts but could
alternatively be durations in seconds.  Assume a higher
observed rate in the target language
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Also we adopt the hypothesis +  that occurrences are Poisson
with a common rate O
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random variable
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where we define the ) -distributed random variable
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In general, for an ) -distributed random variable )Q Z�  and a
binominal random variable %Q S�  we have the following
relationship [7] (provided Q , Z  are both even numbers)
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It is easy to evaluate the right hand side from the observed
counts Q� , Q�  and total lengths W� , W�  for a particular substring
and the value returned can then be interpreted as the 3 -value
(actually an upper bound on it) for a test of significance of the
hypothesis +  for this substring.  A small value indicates that
the rate of occurrence for the target language is significantly
higher than for the other languages.  No assumption of large
numbers is made and it is often the case that Q� � .  A score is
associated with each substring equal to minus the log of this 3 -
value, and those substrings are retained for which the score
exceeds 2.3, corresponding to a significance level of 10%.
Scores up to 15 have been seen for substrings that occur often
in target data and seldom or never in the remaining data.  A set
of significant substrings is generated automatically for each
target language by recursively growing shorter significant
substrings into longer ones and counting and testing those in
turn.  A score is generated for each test utterance by matching
the significant substrings against the phone transcriptions
produced by the recognisers for each target language.  At
present, only exact matches are permitted.  Occurrences of
substrings can overlap, therefore the lattice of detections is
parsed in order to find the highest-scoring (cumulative) path.
This result is divided by the total number of phones to give an
overall score.

2.4 Other Techniques

Usefulness  This technique uses the knowledge that phones
occur with different frequencies in different languages.  The
phone recognisers for each target language produce
transcriptions from which the frequency of occurrence of each
phone can be calculated.  These frequencies differ when the



same phone occurs in different languages.  So the frequency of
occurrence of a phone differs when the true language is used as
input to a recogniser, to the frequency when another language is
used.  These differences can be used to identify which language
is being spoken.

Frequency histograms  This technique uses the relative
frequency of occurrence of the phones of a language to identify
that language.  The mean rate of occurrence of each phone can
be calculated from the transcriptions produced by the phone
recognisers for each language.  The variability in the frequency
of occurrence of each phone can also be used, provided that
enough training data is available.  A correlation measure is then
used to compare frequency histograms of phone occurrences
between training and test data.

3. EXPERIMENTS

3.1 Databases

The experiments described have been carried out using data
from the NIST 1996 Language Recognition Evaluation, in
accordance with the rules set out in the evaluation plan [8].  The
technical objective of the evaluation was to detect the presence
of a hypothesised target language, given a segment of
conversational speech collected over the telephone, where the
target languages were: American English, Arabic, Farsi, French,
German, Hindi, Japanese, Korean, Mandarin, Spanish, Tamil
and Vietnamese. The CALLFRIEND and OGI databases were
used to train our language recognition system as follows.
Accurate HMMs for each phone were built for the six languages
of OGI for which there exist phone level annotations. The
CALLFRIEND data (for which no annotations existed) for the
same six languages was then transcribed using these accurate
HMMs.  A second set of models was then built using both the
CALLFRIEND and OGI data.  Models were built for the
remaining six languages using a bootstrap approach.  A set of
models corresponding to the correct phones for a new language
was assembled from the models built for the original six
languages.  Phonetic knowledge was used to select appropriate
models.  An iterative process was then used to transcribe the
unannotated data and build models, until the model sets
produced stabilised.

3.2 Feature Extraction

Speech is sampled at 8kHz and then filtered by a filterbank of
nineteen mel-spaced filters.  The log power outputs from the
filterbank are transformed into twelve cepstral coefficients, plus
twelve first-order and twelve second-order cepstral coefficients.
The cepstral coefficients are augmented  by energy, plus first-
order and second-order energy parameters to give a frame of
thirty-nine features every 10ms.  A speech segmentation
algorithm is then used to identify speech segments and to

discard regions of silence or noise.  Finally, cepstral mean
subtraction is applied to each speech segment.

3.3 System Overview

Our system consists of twelve phone recognisers, one for each
of the target languages in the NIST data.  Each generates
acoustic likelihood scores and phone transcriptions.  The system
is trained by transcribing data from each target language with
each recogniser, the transcriptions produced are then used to
build bigram, substring, usefulness and histogram models, for
each recogniser/language pair.  For a given test utterance, each
of the target languages is hypothesised in turn, generating a
score for each of the four techniques above plus acoustics, for
each recogniser/hypothesis pair.  So for each test utterance a
total of sixty scores are generated  These scores can then be
fused at different levels.

3.4 Data Fusion

Normalisation within techniques  A separate multi-layer
perceptron (MLP) with one hidden layer was trained
independently for each technique.  Each MLP had twelve
inputs, corresponding to the scores for the twelve hypothesised
languages for a particular technique.  Twelve hidden nodes and
twelve output nodes corresponding to the twelve languages to
be verified were used.  Independent DET curves [9] for each
technique after normalisation are plotted in Figure 1.
Normalising across hypotheses typically reduced the EER for
an independent technique by a half.  Figure 1 shows some
techniques are clearly better than others, but our hypothesis is
that the different techniques give rise to errors which are
uncorrelated.  Fusing the results from the separate techniques
should therefore give better overall performance.
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Figure 1  DET curves showing independent techniques
normalised across all twelve hypotheses.



Fusion across techniques  A single MLP with one hidden layer
was trained for all techniques.  The MLP had sixty inputs,
corresponding to the scores for the twelve hypothesised
languages for each of the five techniques.  Sixty hidden nodes
and twelve output nodes were used.  A DET curve for the final
system is plotted in Figure 2 and results are broken down per
language in Table 1.  When fusing multiple techniques we can
reduce the overall EER compared to the best individual
technique with normalisation across hypotheses.
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Figure 2  DET curve showing data fusion across all five
techniques and all twelve hypothesis.

% FOM % EER

American 99.2 4.7

Arabic 95.6 9.6

Farsi 94.2 12.5

French 95.0 10.0

German 96.7 8.8

Hindi 89.3 17.2

Japanese 96.0 10.4

Korean 90.9 17.9

Mandarin 96.5 8.6

Spanish 95.1 12.4

Tamil 93.1 12.5

Vietnamese 94.2 11.4

Table 1  Per language results for data fusion across all five
techniques and all twelve hypothesis.

4. CONCLUSIONS

Acoustic modelling using anti-models and LDA gives useful
improvements in performance.  While normalisation across
hypotheses is essential to gain the most from a single technique.
Data fusion across techniques gives the best system and further
investigation showed that the contribution of some techniques
was marginal and better results were achieved by fusing
together just four techniques and not using the frequency
histogram scores.  We also found that fusing just bigram and
substring scores gave better results than either in isolation.
Although bigrams may appear to be a subset of the substring
approach, the techniques model different information about the
target languages.  Finally, we note that results vary quite widely
across languages, possibly due to poor acoustic modelling in
some cases.
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