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are used to transcribe training data taken from other languages.
ABSTRACT A second set of models is then built from these transcriptions.

Each acoustic model then has associated with it a new model

Recurrent phone substrings that are characteristic of a Iangua%ﬁ . ) .
. . . ._called its anti-model. These anti-models are used to model the
are a promising technique for language recognition. In previous

o . . second class of data. Linear Discriminant Analysis (LDA) is
work on language recognition, building anti-models to i . .

) . then used to generate final sets of acoustic models and anti-
normalise the scores from acoustic phone models for tar etodels for each target lanquage
languages, has been shown to reduce the Equal Error Raté 9 guage.
(ERR) by a third. Recurrent substrings and anti-models ha\fZ Bi

now been applied alongside three other techniques (bigrams,

usefulness and frequency histograms) to the NIST 199§5.5m models are built from the transcriptions produced by the
Language Recognition Evaluation, using data from thghone recognisers femch target laguage. Foeach reogniser
CALLFRIEND and OGI databases for training. By fusingsenarate bigram models are built from training data taken from
scores from the different techniques using a multi-layefe cyrrent language of interest and also femmoh of the other
perceptron the ERR on the NIST data can be reduced further-languages of interest. The bigram statistics are smoothed by
using a linear interpolation of unigram and bigram counts,
1. INTRODUCTION similar to that used in [3].

grams

Our language recognition system consists of five technique2,3 Recurrent Substrings

including recurrent substrings [1], whose outputs are then fused.

The f9||0Wi”9 sections descripe the theory b?hi”d each of theRRcurrent phone substrings that are characteristic of a language

techmques and then describe the experiments and reswg generated recursively by growing shorter substrings and

obtained. testing for significance. The test compares the rates of

occurrence of a substring in training data from a target language

2. THEORY and a sample of other languages. A substring may be a rare

. event but of high utility whenever it occurs, so a Poisson

2.1 Acoustic Models significance test which is valid even for small counts is used. A

- score inferred from the test statistic is associated with each
Our language recognition system uses separate PhOlghstring and used for language verification, differing from the

recognise.rs. foreach target @Uage- Each acpustic Phone;pproaches taken in [4] and [5]. We consider longer n-grams
model, within each regniser, I1s a three state H'dde'j M_arkov(trigrams up to pentagrams) that are assumed to occur relatively
Modell (HM.M). W't.h left to ”gh.t topology. Multlva}r.late infrequently and independently of each other, so that they can
Gaussian distributions with continuous mixture densities agg, odelled as a Poisson process with an occurrenceirate
used and separate models are b”'_lt_ for. male and femalR\igrams and bigrams are excluded because their occurrences
spe.ellker.s. Where. language recognition is implemented By, not to obey a Poisson process. The significance test used
verification of multiple hypotheses, there are two classes @f \,5sed on the hypothesis that the occurrence Aafis the

data. The first class is target languages which can be modelled\a tor two streams of data (a target language and a sample of
accurately during training. However, the sed class can COME other languages) but is unknown. Substrings that are highly
from any other Ia}nguage and can not b? modelled explicitly. §gnificant by this test are then used for language verification.
general model is therefore built, using Bayes theorem, tpo tast is similar to one described in [6]. Suppose for a
normahge th? score of a language being V?”f'Ed (2. A glenerfi‘é\rticular substring there ar§, (random variable) occurrences
model is built for each target riguage using the following i, the training data for a target language, with total length
approach. The acoustic models representing a target [anguag® v, occurrences for other languages, with total length



t; and ¢, are actually gross phone counts but could
. . . . wp 1
alternatively be durations in seconds. Assume a higher Pl F, 5> =P| B, <—(v-2)

. v(1- —| -2), 2

observed rate in the target language ( p) (vra=2).p
}’ll/tl >n2/t2 Settlng

Also we adopt the hypothesi# that occurrences are Poisson V=2(nz + 1) =2

with a common ratel
it follows that

Ny ~ P(at Ny ~ P(it
1~ ) 2~ i) P(NlanmNz£n2|H)£P(B”1+”2)p£n2)

:i(n1+n2j k(l— >nl+n27k
. pr-p

Using the following general relationship [7] between a Poisson
random variable

N,u ~ P(/u) k=0
and a chi-square random variable where
Y, ~ 22 o _ 2mp __mb
v vi-p) 2(my+1)(1-p) (my+1)y
that
from which
PN, < =P(Y21 >2/1)
( ) (+-\') P=t2/(tl+t2)
we have It is easy to evaluate the right hand side from the observed
countsn, , ny and total lengths, , 7, for a particular substring
> =
P(N1 > m|H) P(Yz,“ <2M1) and the value returned can then be interpreted astivalue
(actually an upper bound on it) for a test of significance of the
P(Ny<m|H)= P(YZ(n2+l) >ut2) hypothesisH for this substring. A small value indicates that
the rate of occurrence for the target language is significantly
BecauseN; and N, are independent we infer higher than for the other languages. No assumption of large
numbers is made and it is often the case that0. A score is
P(Ny2n "Ny <m|H)= P(an1 <24 Ny, ) > 2/b‘z) associated with each substring equal to minus the log ofthis
value, and those substrings are retained for which the score
It follows that exceeds 2.3, corrpending to a significance level of 10%.
v Scores up to 15 have been seen for substrings that occur often
P(Ny2m ANy <my| H) < P{ 2(m+1) >2J in target data and seldom or never in the remaining data. A set
D, h of significant substrings is generated automatically for each

target language by recursively growing shorter significant
V1) [ 2n2 +1) t2/2(ny +1) substrings into longer ones and counting and testing those in
=P v /2n 0 2n turn. A score is generated for each test utterance by matching
2m [~ 1= the significant substrings against the phone transcriptions
produced by the recognisers feach target leguage. At

- P E N miy present, only exact matches are permitted. Occurrences of

2(n2+l),2n1 1 . . . .

(”2+ )f1 substrings can overlap, therefore the lattice of detections is

_ o _ parsed in order to find the highest-scoring (cumulative) path.

where we define the" -distributed random variable This result is divided by the total number of phones to give an

Yz(n2+1)/2(n2 +1) overall score.

P _ Amr)/ 2T
2y +1) 2n, Yo, /2m 2.4 Other Techniques

In general, for anf" -distributed random variablé;, , and a Usefulness This technique uses the knowledge that phones

binominal random variableB, , we have the following occur with different frequencies in different languages. The

relationship [7] (provided’, @ are both even numbers) phone recognisers foreach target Iaguage produce
transcriptions from which the frequency of occurrence of each
phone can be calculated. These frequencies differ when the



same phone occurs in different languages. So the frequencydidcard regions of silence or noise. Finally, cepstral mean
occurrence of a phone differs when the true language is usedsabtraction is applied to each speech segment.

input to a recogniser, to the frequency when another language is

used. These differences can be used to identify which languaged ~ System Overview

is being spoken.
Our system consists of twelve phone recognisers, oneaftdr

Frequency histograms This technique uses the relativeof the target languages in the NIST data. Each generates
frequency of occurrence of the phones of a language to identif¢oustic likelihood scores and phone transcriptions. The system
that language. The mean rate of occurrenceaohphone can s trained by transcribing data from each targaglmge with

be calculated from the transcriptions produced by the phoggch reogniser, the transcriptions produced are then used to
recognisers foeach laguage. The variability in the frequency puild bigram, substring, usefulness and histogram models, for
of occurrence of eachhone can also be used, provided thaéach reogniser/language pair. For a given test utteraeaeh
enough training data is available. A correlation measure is thgf the target languages is hypothesised in turn, generating a
used to compare frequency histograms of phone occurreneggre for each of the four techniquémoee plus acoustics, for

between training and test data. each reogniser/hypothesis pair. So feach test utterance a
total of sixty scores are generated These scores can then be
3. EXPERIMENTS fused at different levels.
3.1 Databases 3.4 Data Fusion

The experiments described have been carried out using dBlarmalisation within techniques A separate multi-layer
from the NIST 1996 Language Recognition Evaluation, iperceptron (MLP) with one hidden layer was trained
accordance with the rules set out in the evaluation plan [8]. Thedependently for each technique. Each MLP had twelve
technical objective of the evaluation was to detect the presenioputs, corresponding to the scores for the twelve hypothesised
of a hypothesised target language, given a segment lahguages for a particular technique. Twelve hidden nodes and
conversational sgech collected over the tpleone, where the twelve output nodes corresponding to the twelve languages to
target languages were: American English, Arabic, Farsi, Frendhe verified were used. Independent DET curves [9] for each
German, Hindi, Japanese, Korean, Mandarin, Spanish, Tarteéchnique after normalisation are plotted in Figure 1.
and Vietnamese. The CALLFRIEND and OGI databases weNormalising across hypotheses typically reduced the EER for
used to train our language recognition system as followan independent technique by a half. Figure 1 shows some
Accurate HMMs for eacphone were built for the six languagestechniques are clearly better than others, but our hypothesis is
of OGI for which there exist phone level annotations. Théhat the different techniques give rise to errors which are
CALLFRIEND data (for which no annotations existed) for theuncorrelated. Fusing the results from the separate techniques
same six languages was then transcribed using tmmmeate should therefore give better overall performance.

HMMs. A second set of models was then built using both the
CALLFRIEND and OGI data. Models were built for the
remaining six languages using a bootstrap approach. A set of 40
models corresponding to the correct phones for a new language
was assembled from the models built for the original six

. s 20 Acoustics
languages. Phonetic knowledge was used to select appropriage Usefulness
models. An iterative process was then used to transcribe thg 10 Hisﬁg{?ﬂi
unannotated data and build models, until the model setg 5 Substrings
produced stabilised. ]

- 2

3.2 Feature Extraction s 1

0.5

Speech is sampled at 8kHz and then filtered by a filterbank of 0.2

nineteen mel-spaced filters. The log power outputs from the 01
filterbank are transformed into twelve cepstral coefficients, plus 0102051 2 5 10 20 40

) > False Al bability (in %
twelve first-order and twelve second-order cepstral coefficients. alse Alarm probability (in %)

The cepstral coefficients are augmented by energy, plus first- o )
order and second-order energy parameters to give a frameFJ)?ure ,1 DET curves showing independent techniques
thirty-nine features every 10ms. A speech segmentaticﬂ?'rmal'SeoI across all twelve hypotheses.

algorithm is then used to identify speech segments and to



Fusion across techniquesA single MLP with one hidden layer 4. CONCLUSIONS

was trained for all techniques. The MLP had sixty inputs,

corresponding to the scores for the twelve hypothesise%COUStiC modelling using anti-models and LDA gives useful
languages foeach of the five techniques. Sixty hiddeodes improvements in performance. While normalisation across
and twelve output nodes were used. A DET curve for the fingypotheses is essential to gain the most from a single technique.
system is plotted in Figure 2 and results are broken down plg,:-ua fusion across techniques gives the best system and further
language in Table 1. When fusing multiple techniques we capvestigation showed that the contribution of some techniques
reduce the overall EER compared to the best individu#/@s marginal and better results were achieved by fusing

technique with normalisation across hypotheses. together just four techniques and not using the frequency
histogram scores. We also found that fusing just bigram and

substring scores gave better results than either in isolation.

Although bigrams may appear to be a subset of the substring
40 . . . .
approach, the techniques model different information about the
target languages. Finally, we note that results vary quite widely
S 20 \ across languages, possibly due to poor acoustic modelling in
£ 10 some cases.
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