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1. ABSTRACT

In a human-machine interaction (dialog) the statistical lan-
guage variations are large among different stages of the
dialog and across different speakers. Moreover, spoken
dialog systems require extensive training data for training
adaptive language models. In this paper we address the
problem of open-vocabulary language models allowing the
user for any possible response ateach stage of the dia-
log. We propose a novel off-line adaptation of stochastic
language models effective for their generalization (open-
vocabulary) and selective (dialog context) properties. We
outline the integration of the finite state dialog model and
the language model adaptation algorithm. The performance
of the speech recognition and understanding language mod-
els are evaluated with theCarmen Sandiegomultimodal
computer game. The new language models give an overall
understanding error rate reduction of 44% over the base-
line system.

2. INTRODUCTION

In the standard speech recognition paradigm, language mod-
els exploit the lexical context statistics (word tuples) ob-
served in a training set to predict word sequences probabil-
ities on a held-out set (test set). In the last decade, this has
been the framework for many DARPA projects (e.g. ATIS,
Wall Street Journal, etc.) that didnotconsider directly the
statistical language variation in a human-machine interac-
tion. In contrast with this scenario, spoken dialog systems
for restricted domains provide a negotiation-oriented ap-
proach to task automation (e.g., flight/train travel planning,
automated call routing, computer games etc.) [1, 2, 3, 10].
In general the word sequence distribution at stagesk of
the dialog, is dependent on the entire interaction history.
Hence, it is more appropriate to conceive the LVSR as
a statistical model that dynamically adapts to the differ-
ent stages of the human-machine negotiations for complet-
ing successfully the task successfully.1 Learning language
models that adapt to different events along a spoken dialog
session is tightly coupled with the state sequence associ-
ated to the human-machine interaction. Without loss of

1In this paper we will perform experiments with an off-line adaptation scheme,
while the algorithms proposed are applicable in an on-line scheme.

generality, we can assume thateach user's response cor-
responds to a state of the dialog model. In this case, the
entire transaction is associated to a state sequence and the
model is defined in terms of the states and state transitions.
The statesk is then used as a predictor to compute the word
sequence probabilityP (w1; w2; : : : ; wN jsk):

P (w1; w2; : : : ; wN jsk) =
Y

j

P (wjjw1; w2; : : : ; wj�1; sk)

(1)
The computation of the probability
P (wjjw1; w2; : : : ; wj�1; sk) can be decomposed into two
subproblems. The first addresses the problem of predicting
the word sequence probability computation given the state
sk. The second involves the estimation of
P (wjjw1; w2; : : : ; wj�1; sk). In previous research reports,
the dialog model has been used to partition the whole set
of utterances spoken in the dialog sessions into subsets
(first sub-problem) and then train standardn-gram lan-
guage models (second sub-problem) [2, 4]. This way,
the user can only utter words that he has previously spo-
ken in a specific dialog state. Such language model design
does not allow for on-line error recovery from speech un-
derstanding or dialog prediction errors. Thus, the main
disadvantages of this approach are the poor language cov-
erage at each state of the dialog and data fragmentation.
In other related work, the estimation problem is solved by
linear interpolation [4] or maximum entropy models [7],
speaker backoff models [6] or MAP training [5]. In this
work we take the approach of training language models
for each statesk in such a way that the user can interact in
an open-ended way without any constraint on the expected
action at any point of the negotiation. In order to boost the
expected probability of any event at statesk we propose
a novel algorithm for stochastic finite state machine adap-
tation. In the following section we outline the stochastic
finite state machine representation of the language model
and the novel adaptation algorithm. Then, we describe the
system components (understanding and dialog model) as
applied to a computer game application. In the last sec-
tion we discuss the performance of the novel adaptation
paradigm along with the speech recognition and under-
standing evaluations.



3. LANGUAGE MODELING

Our approach to language modeling is based on the Vari-
able Ngram Stochastic Automaton (VNSA) representation
and learning algorithms first introduced in [8, 9]. The
VNSA is a non-deterministic stochastic automaton that al-
lows for parsing any possible sequence of words drawn
from a given vocabularyV . In its simplest implemen-
tation the stateq in the Stochastic Finite State Machine
(SFSM) encapsulates the lexical (word sequence) history
of a word sequence. Each state recognizes a symbolwi 2
V . The probability of going from stateqi�1 to qi (and
recognize the symbol associated toqi) is the state tran-
sition probability,P (qijqi�1). Stochastic finite state ma-
chines represent in a compact way the probability distribu-
tion over all possible word sequences. The probability of
a word sequenceW can be associated to a state sequence
�jW = q1; : : : ; qN and to the probabilityP (�jW ). For a
non-deterministicfinite state machine the probabilityofW

is then given byP (W ) =
P

j P (�jW ). Moreover, by ap-
propriately defining the state space to incorporate lexical
and extra lexical information, the VNSA formalism can
generate a wide class of probability distribution (i.e., stan-
dard wordn-gram, class-based, phrase-based, etc.) [9].

3.1. Language Model Adaptation

In spoken language system design, the state of the dialog
sk is used as predictor for the most likely user response.
For example, if in a particular statesk the computer asks a
confirmation question (YES-NO) the most likely response
will be in the YES-NO equivalent class. However, due to
dialog model error predictions and to speechunderstand-
ing errors, we want to let the user move from one state to
any state of the dialog. We achieve this goal by building
language models that are open in vocabulary foreach state
sk. At the same time we adapt language models foreach
stage on the expected users' responses.
The set of all user's observed responses at a specific stage
i of the dialog is split into trainingTk (

T
k Tk = ;), de-

velopment (Bk) and test (Ek) sets. We train a context in-
dependent Variable Ngram Stochastic Automaton�T on
the training setT =

S
k Tk. While, �T has full coverage

over all possible word sequencesW at any statesk, it does
not provide a selective model for a given dialog state pre-
diction. Thus, we build the adapted language models��k
as to maximize the stochastic separation from the generic
model�T . The model��k is thus computed as the solution
of the log likelihood maximization problem:

��k = argmax
�A
k

logP (Bkj�
A
k ) (2)

where the model�Ak is estimated as a linear interpolation
of the language model�T and a state dependent model�k.
For each setTk we run Viterbi training starting from the
generic model�T and estimate the transition probabilities

of the SFSM�k. In order to account for unseen transitions
we smooth the transition probabilities with the standard
discount techniques discussed in [9]. The transition prob-
abilities for the model�Ak are then computed as follows:

PA
k (qjjqj�1) = �kP

T (qjjqj�1) + (1� �k)Pk(qjjqj�1)
(3)

The solution to equation 2 with respect to the param-
eters�k cannot be given in an explicit form. Hence, we
use a greedy algorithm over the development setsBk to
find the local optimum over a finite number of�k values.
In general there may not be enough data to have sufficient
statistics from the training setsTk. In these cases we re-
place the Viterbi training estimatesPk(qjjqj�1) with prior
distributions. The complete block diagram, describing the
adaptation scenario and training algorithm steps is shown
in Fig. 1.
            

Figure 1: Block Diagram for the Language Model Adap-
tation Algorithm

4. DIALOG FLOW MODEL

In this section, a formal representation of the “dialog flow”
of a general human-machine interaction with multimodal
input and output is introduced. A user-initiated “dialog”
is assumed which is typical for gaming applications. Fur-
ther, it is assumed that the user input is interpreted by the
application free of context. These assumptions simplify
the discussion that follows but can be easily relaxed. The
central notion of the dialog flow model is the statesk that
we define in terms of user input and system outputs. Ifit
is a multimodal user input to the application andot is the
multimodal output in response to inputit, then a typical
transaction is

: : : it�1 ! ot�1| {z }
s(t�1)

7! it ! ot| {z }
s(t)

7! it+1 ! ot+1| {z }
s(t+1)

: : : (4)



wheres(t) is thedialog stateat timet ands(t) = sk; k =
1; : : : ;K. Further we defineIk to be the set of all user in-
puts that trigger statesk, andOk the set of system outputs
that is produced when the system leaves statesk, i.e., all
system responses to inputit 2 Ik. Under the assumption
of context-free interpretation of user input:it2Ik , ot2
Ok. Thus, we formulate the understanding problem as the
mapping from the inputit into the dialog statesk. User
input classIk will be referred henceforth as adialog state
class.

Let us now define aprompt-based(or output-based)
classAk = T k [ Bk [ Ek as the set of all user inputs
that come as a response to a system output fromOk, i.e.,
Ak = fit : 9 ot�12Ok; ot�1 7! itg. Note the difference
betweenAk andIk = fit : 9 ot 2 Ok; it ! otg. One
can guarantee thatIk contains semantically equivalent ut-
terances (since they all trigger the same actionsk) but the
same is not necessarily true forAk. Finally, note that the
classification of user input into dialog state classAk re-
quires solving the understanding problem, while mapping
the user's input into the prompt based classesAk is done
automatically by the system (s(t � 1) is known at timet).
As a resultT k, Bk andEk can be used in an unsupervised
language adaptation scheme as proposed in section 3.1.

5. UNDERSTANDING MODEL

As discussed in Section 4 the understanding problem is
defined here as determining the dialog states(t) given the
user inputit. A typical statistical approach to this problem
involves constructing a modelLk from the training setIk
using a maximum likelihood criterion and then determin-
ing the dialog state from the user input as:

k̂ = argmax
k

P (Lkjit) = argmax
k
fP (itjLk)P (Lk)g:

If user input is given as a text string thenIk is a set
of transcribed sentences. A simple statistical model forIk
is the computation of the word sequence probability corre-
sponding to the user's utterance. For this purpose we have
used the Variable Ngram Stochastic Automaton [9]. Re-
call thatn-grams have been used extensively for language
modeling and well-established learning algorithms exist in
the literature. IfLk is then-gram statistical model trained
from Ik and the input utteranceit = w1w2::wN is repre-
sented as

L
nwn then

P (Lkjit) � P (Lkj
M

n:wn2Lk

wn) [(coov)
P

n

�(wn =2Lk)] (5)

wherewn 2 Lk signifies that wordwn is in vocabulary
drawn fromLk

2, �(wn =2 Lk) = 1 for out of vocabulary
(OOV) word (else0) andcoov is a task dependent constant
penalty for deletion of OOV words from inputit. The se-
lected dialog statesk̂ is the one that maximizes Eq.(5). The

2SymbolLk is used for both the Ngram model and the set of all utterances
produced by this model.

train test
utterance class utter. utter. leng. oov
prompt-top 4320 1499 5.1 2.5%
prompt-search 581 204 4.5 7.8%
prompt-profile 509 175 4.8 4.1%
prompt-travel 629 172 5.0 2.9%
all 6039 2050 5.0 2.0%

Table 1: Corpus statistics: total number of utterances
(shown for both training and testing corpora), average
sentence length, out-of-vocabulary rate forAk, where
sk is: top (navigation and query),search (database),
profile (database entry) ortravel .

trigram grammar
State adapt-1 adapt-2

PP WA PP WA
prompt-top 3.5 81.8% 4.0 82.4%
prompt-search 11.1 59.3% 14.6 57.9%
prompt-profile 8.2 67.1% 9.5 64.2%
prompt-travel 7.0 71.8% 4.0 74.5%
all 77.7% 78.0%

Table 2: Word accuracy (WA) and Perplexity (PP) per
prompt-based dialog state for adapted trigram language
models across different dialog statessk and test setsEk.

existence of OOV words in the transcribed input stringit is
common for closed vocabulary systems. Moreover, OOV
words might appear even whenit is the output of an au-
tomatic speech recognizer because in general the training
corpusIk for understanding modelLk is a subset of the
language model training corpusI, i.e.,Ik� I. Note that
more sophisticated strategies can be used for dealing with
OOV words, e.g., by labeling some words in each train-
ing setIk as OOV (using held out data) and by including
the “OOV” label explicitly inLk. Further, techniques for
dealing with sparse data can be borrowed from the lan-
guage modeling literature, e.g., introduction of concepts
or word/phrase super-classes. A detailed discussion of the
understanding model is beyond the scope of this paper.

6. EXPERIMENTAL RESULTS

The algorithms proposed above have been applied to the
“Carmen Sandiego” task. In [1], data have been collected
and analyzed from 160 children ages 8-14 using voice to
interact with the popular computer game “Where in the
U.S.A. is Carmen Sandiego?” by Brøderbund. To success-
fully complete the game (i.e., arrest the appropriate sus-
pect, two subtasks have to be completed), namely, deter-
mining the physical characteristics of the suspect to issue
an arrest warrant and tracking the suspect's whereabouts



Word Accuracy
ASR grammar baseline adapt-1 adapt-2
phrase-unigram 71.1% 73.1%
bigram 73.9% 74.8% 74.7%
phrase-bigram 76.2% 77.0%
trigram 77.8% 77.7% 78.0%
phrase-trigram 77.7% 78.1%

Table 3: Word Accuracy before and after language adapta-
tion and for different language models.

(in one of fifty U.S. states). The game is rich in dialog
subtasks including: navigation and multiple queries (talk
to cartoon characters on the game screen), database en-
try (filling the suspects profile), and database search (look
up clues in a geographical database). Using the dialog
flow notation introduced in Section 4 we have defined four
dialog states:top (navigation and queries),profile
(database entry),search (database) andtravel (to a
U.S. state). For a better understanding of the semantic de-
scription of the dialog states see [1]. All collected utter-
ancesit have been manually assigned to the correct state
sk that they trigger according to the definition of Ik. The
training set

S
k Tk consists of 6039 utterances collected

from 51 speakers and the test set consists of 2050 utter-
ances from 20 speakers. In Table 1 the differences in out-
of-vocabulary rate and test set perplexity is shown for the
prompt based states. Note the uneven distribution and
sparseness of both training and testing data.
Context independent hidden Markov Models (HMMs) us-
ing three states and sixteen Gaussians to model eachphone
were trained. VNSAs were used for language modeling
with N = 1; 2; 3; specifically, word bigram and trigram,
and phrase unigram, bigram and trigram. Finally, word
trigrams were trained fromIk and used as understanding
modelsLk (coov = 10). Results are reported for speech
recognition (labeled “wordaccuracy”), and sentence clas-
sification. The baseline system is based on the context
independent language model�T . Two algorithms were
used for language adaptation. The first one used data only
fromT k to constructed prompt-based language models�k
(referred to as “adapt-1”). The second algorithm usedall
training datato estimate��k (referred to as “adapt-2”). The
speech recognition results are shown in Table 2 and 3. In
Table 2, we compare the Word Accuracy for the two adap-
tation schemes “adapt-1” and “adapt-2” for a trigram lan-
guage model. The open-vocabulary model��k gives 3-10%
error rate reduction for the most populated dialog state
classes. Thesearch andprofile dialog states are the
most difficult test sets due to the high OOV rates (see Ta-
ble 1) and lack of training/adaptation data. Word accu-
racy has increased due to better probability estimates (all
data is used for adaptation) and larger language coverage
across different states of the dialog. The speechunder-

standing task has been carried over the pre-defined four
dialog states according to the model delivered by equa-
tion 5. Understanding accuracy is computed as the number
of correctly classified state labels over the total number of
state labels. The overall (

S
k Ek) understandingaccuracy

from speech using a closed-vocabulary trigram language
model (P (Lkjit) in equation 5) is91:8%, achieving a44%
error rate reduction over the baseline system (85.4%). The
understanding performances per statesk are not uniform
and range between 4% (top ) and 19% (profile ). We
expect, that a more accurateunderstanding model based
on��k could outperform the model estimates based on the
OOV factor (coov) factorization.

7. CONCLUSION

In this paper we have proposed a novel adaptation scheme
for language modeling in the framework of spoken lan-
guage system. Data sparseness is a serious problem for
stochastic language modeling for large vocabulary systems.
Moreover, the sparseness problem is even more acute in
presence of data fragmentation, and that is the case of spo-
ken dialog systems. For these reasons, a major challenge
in stochastic language modeling is to exploit all available
data while providing reliable probabilities conditioned on
the dialog state. In this work, we have shown, that our
adaptation scheme is effective in delivering statistically re-
liable probability estimates and increasing the language
coverage at any statesk.
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