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1. ABSTRACT generality, we can assume thesich user's regnse cor-
In a human-machine interactiodiélog) the statistical lan- responds to a.stat'e of the'dlalog model. In this case, the
entire transaction is associated to a state sequence and the

guage variations are large among different stages of the . . . L
dialog and across different speakers. Moreover Spokenmodel is defined in terms of the states and state transitions.

dialog systems require extensive training data for training '€ State is then used as a predictor to compute the word
adaptive language models. In this paper we address the€duence probability (wy, ws, ..., wi|se):

problem of open-vocabulary language models allowing the

user for any possible responseegtch stage of the dia-

log. We propose a novel off-line adaptation of stochastic P(wy, wy, ..., wysk) = HP(wj|w1, Wy, ..., Wi_1; Sk)
language models effective for their generalization (open- J )
vocabulary) and selective (dialog context) properties. We . .
outline the integration of the finite state dialog model and "€ computation of the probability
the language model adaptation algorithm. The performancep(wjml’ W, ..., wj—1; sx) can be decomposed into two

d- subproblems. The first addresses the problem of predicting
els are evaluated with th@armen Sandieganultimodal the word sequence probability computation given the state

computer game. The new language models give an overalf®- The second involves the estimation of

understanding error rate reduction of 44% over the base-I (Wj|w1, wa, ..., w;j_1;s;). In previous research reports,
line system. the dialog model has been used to partition the whole set

of utterances spoken in the dialog sessions into subsets
(first sub-problem) and then train standaréyram lan-
2. INTRODUCTION guage models (second sub-problem) [2, 4]. This way,

the user can only utter words that he has previously spo-
In the standard speech memition paradigm, language mod- ken in a specific dialog state. Such language model design
els explOit the lexical context statistics (Word tupleS) ob- does not allow for on-line error recovery from Speech un-
served in a training set to predict word sequences probabil-gerstanding or dialog prediction errors. Thus, the main
ities on a held-out set (test set). In the lastade, thishas  disadvantages of this approach are the poor language cov-
been the framework for many DARPA projects (e.g. ATIS, erage at each state of the dialog and data fragmentation.
Wall Street Journal, etc.) that ditbtconsider directly the | other related work, the estimation problem is solved by
statistical |anguage variation in a human-machine interac-"near interpo|ation [4] or maximum entropy models [7]’
tion. In contrast with this scenario, spoken dialog systems speaker backoff models [6] or MAP training [5]. In this
for restricted domains provide a negotiation-oriented ap- work we take the approach of training language models
proach to task automation (e.g., flight/traintravel planning, for each state; in such a way that the user can interact in
automated call routing, computer games etc.) [1, 2, 3, 10]. an open-ended way without any constraint on the expected
In general the word sequence distribution at stag®f  action at any point of the negotiation. In order to boost the
the dialog, is dependent on the entire interaction history. expected probabmty of any event at statewe propose
Hence, it is more appropriate to conceive the LVSR as g novel algorithm for stochastic finite state machine adap-
a statistical model that dynamically adapts to the differ- tation. In the following section we outline the stochastic
ent stages of the human-machine negotiations for complet-inijte state machine representation of the language model
ing successfully the task successfulliearning language  and the novel adaptation algorithm. Then, we describe the
models that adapt to different events along a spoken dialogsystem components (understanding and dialog model) as
session is tightly coupled with the state sequence assocCigpplied to a computer game application. In the last sec-
ated to the human-machine interaction. Without loss of tion we discuss the performance of the novel adapta‘[ion

!In this paper we will perform experiments with an off-line adaptation scheme, parad,lgm along ,Wlth the SpeeCh & ition and under-
while the algorithms proposed are applicable in an on-line scheme. standing evaluations.

of the speech regnition and understanding language mo




3. LANGUAGE MODELING of the SFSM)\,.. In order to account for unseen transitions
o ~we smooth the transition probabilities with the standard
Our approach to language modeling is based on the Vari-discount techniques discussed in [9]. The transition prob-
able Ngram Stochastic Automaton (VNSA) representation abilities for the modeh;* are then computed as follows:
and learning algorithms first introduced in [8, 9]. The _, _ T
VNSA is a non-deterministic stochastic automaton that al- £ (%i14i-1) = ax 7 (gjlaj-1) + (1 Qak)P’“(qﬂq‘?"(lg))

lows for parsing any possible sequence of words drawn : . .
from a given vocabulary’. In its simplest implemen- The solution to equation 2 with respect to the param-
etersay, cannot be given in an explicit form. Hence, we

tation the statey in the Stochastic Finite State Machine reedy algorithm over the development #ats
(SFSM) encapsulates the lexical (word sequence) historyl%Se a greedy aigo over the developme 0
of a word sequence. Each state recognizes a sympel find the local optimum over a finite number of, values.

V. The probability of going from state;_; to ¢, (and In general there may not be enough data to have sufficient

recognize the symbol associatedq9 is the state tran- S}Zgzt;ﬁz ]:r/ir;rg?ﬁ;ﬁ: mgszfnﬁacté%n( th|e§e ():E\iafﬁ v:/iirre-
sition probability, P(g:|¢:_1). Stochastic finite state ma- P 9 951951 b

chines represent in a compact way the probability distribu- gldsgl?;;f:;lggr?ggnpcljett;iﬂ% Ckf;“i%ﬁ‘nr:]’ gi}scsr'gns%gxn
tion over all possible word sequences. The probability of P 9ag P

a word sequencl/’ can be associated to a state sequenceIn Fig. 1.

3. = q1,...,qvy and to the probability?(¢l,). For a
non-deterministicfinite state machine the probabilitjiof T
is then given byP (W) = 3°. P(&,). Moreover, by ap-

propriately defining the state space to incorporate lexical
and extra lexical information, the VNSA formalism can v
generate a wide class of probability distribution (i.e., stan- W@
dard wordn-gram, class-based, phrase-based, etc.) [9]. Learnin

3.1. Language Model Adaptation | AT

In spoken language system design, the state of the dialo¢ : Viterbi T

sy, is used as predictor for the most likely user response. i Training k

For example, if in a particular statg the computer asks a

confirmation question (YES-NO) the most likely response v v ;{k

will be in the YES-NO equivalent class. However, due to [ maxlog £(8, 1) ]‘_i
dialog model error predictions and to speestderstand- y k

ing errors, we want to let the user move from one state to

any state of the dialog. We achieve this goal by building ﬂ:

language models that are open in vocabulanefmh state

si. At the same time we adapt language modelsefch

stage on the expected users' responses. . . :

The set of all user's observed responses at a specific stagt'é'?ureAll' BI.?P:: k Diagram for the Language Model Adap-
i of the dialog is split into training, (), 7= = @), de- ation Algorithm
velopment B;) and test {;) sets. We train a context in-
dependent Variable Ngram Stochastic Automatdnon _ _ 4. DIALOG FLOW MO.DEL _

the training sef” = J, 7. While, A7 has full coverage I this section, a formal representation of the “dialog flow”
over all possible word sequencésat any state;, it does of a general human-machine interaction with multimodal
not provide a selective model for a given dialog state pre- inPut and output is introduced. A user-initiated “dialog”
diction. Thus, we build the adapted language modgls IS assumed which is typical for gaming applications. Fur-
as to maximize the stochastic separation from the genericther, it is assumed that the user input is interpreted by the
model\” . The model\; is thus computed as the solution application free of context. These assumptions simplify

of the log likelihood maximization problem: the discusgion that fol'lows but can be gasily relaxed. The
central notion of the dialog flow model is the statethat
\; = argmaxlog P (B |A\{) (2) we define in terms of user input and system outputs, If
AR is a multimodal user input to the application ands the

- ) . ] . multimodal output in response to inpijt then a typical
where the model; is estimated as a linear interpolation  ransaction is

of the language model” and a state dependent modgl . . . @
1 i i 1 o ] S Op—1 >l —> O > 1 — 0

For egch sefy ¥ve run V!terb| training ngrtmg from.t.h.e t—1 t—1 ¢ ¢ t41 t+1

generic modeh’ and estimate the transition probabilities s(t—1) s(t) s(t41)



wheres(t) is thedialog stateat timet ands(t) = s, k =

1,..., K. Further we defin& to be the set of all user in- train test

puts that trigger statg,, andQ;, the set of system outputs utterance class utter. | utter. | leng. | oov
that is produced when the system leaves stgté.e., all promptiop 4320 1499 5.1 | 2.5%
system responses to inpite Z. Under the assumption promptsearch o8l | 204 ) 4.5 | 7.8%
of context-free interpretation of user input= 7, < o; € promptprofile 5091 175 1 4.8 | 4.1%
Oy. Thus, we formulate the understanding problem as the | Promptiravel 629 | 172 | 5.0 | 2.9%
mapping from the input; into the dialog state;. User all 6039 | 2050| 5.0 | 2.0%

input classZ;, will be referred henceforth asdialog state

class Table 1: Corpus statistics: total number of utterances
Let us now define grompt-basedor output-based)  (shown for both training and testing corpora), average

classAx = Ty U By U &y as the set of all user inputs  sentence length, out-of-vocabulary rate fdy, where

that come as a response to a system output fthmi.e., sp is: top (navigation and query)search (database),

Ag = {it : Joi—1 €Ok, 001 — it }. Note the difference  profile  (database entry) dravel

betweend; andZ, = {i; : o € Ok,iy — o:}. One

can guarantee thdt, contains semantically equivalent ut-

terances (since they all trigger the same actignbut the trigram grammar

same is not necessarily true fdy,. Finally, note that the State adapt-1 adapt-2
classification of user input into dialog state claég re- PP | WA PP | WA

quires solving the understanding problem, while mapping | promptiop 3.5 | 81.8%| 4.0 | 82.4%

the user's input into the prompt based clasggds done promptsearch 11.1| 59.3% | 14.6 | 57.9%
automatically by the systemz (¢ < 1) is known at time). promptyprofile 8.2 | 67.1%| 9.5 | 64.2%

As aresult7 i, B, and&; can be used in an unsupervised promptiravel 7.0 | 71.8% | 4.0 | 74.5%
language adaptation scheme as proposed in section 3.1. all 77.7% 78.0%

5. UNDERSTANDING MODEL Table 2: Word accuracy (WA) and Perplexity (PP) per

As discussed in Section 4 the understanding problem isprompt-based dialog state for adapted trigram language
defined here as determining the dialog st4té¢ given the ~ models across different dialog statgsand test sets.

user input,. A typical statistical approach to this problem
involves constructing a modél;, from the training sef
using a maximum likelihood criterion and then determin-
ing the dialog state from the user input as:

existence of OOV words in the transcribed input string
common for closed vocabulary systems. Moreover, OOV
words might appear even whenis the output of an au-
k = argmax P(Ly|i;) = argmax{P(i;|Lx)P(Ly)}. tomatic speech regnizer lecause in general the training
k k corpusZ;, for understanding moddl;, is a subset of the
If user input is given as a text string thén is a set  language model training corpsi.e.,Zx C Z. Note that
of transcribed sentences. A simple statistical modeffor ~ more sophisticated strategies can be used for dealing with
is the computation of the word sequence probability corre- OOV words, e.g., by labeling some words in each train-
sponding to the user's utterance. For this purpose we havéng setZ, as OOV (using held out data) and by including
used the Variable Ngram Stochastic Automaton [9]. Re- the “OOV” label explicitly in L. Further, techniques for
call thatn-grams have been used extensively for languagedealing with sparse data can be borrowed from the lan-
modeling and well-established learning algorithms exist in guage modeling literature, e.g., introduction of concepts
the literature. IfL;, is then-gram statistical model trained ~ Or word/phrase super-classes. A detailed discussion of the
from Z;, and the input utterance = wyws..wy is repre- understanding model is beyond the scope of this paper.
sented agp,, w, then

6. EXPERIMENTAL RESULTS

The algorithms proposed above have been applied to the
“Carmen Sandiego” task. In [1], data have been collected
wherew, € Ly signifies that wordw,, is in vocabulary  and analyzed from 160 children ages 8-14 using voice to
drawn from L., d(w, ¢ Lx) = 1 for out of vocabulary interact with the popular computer game “Where in the
(OQOV) word (else)) andc,,, is a task dependent constant (.S A. is Carmen Sandiego?” by Braderbund. Tecess-
penalty for deletion of OOV words from inpat The se-  fully complete the game (i.e., arrest the appropriate sus-
lected dialog state;, is the one that maximizes Eq.(5). The pect, two subtasks have to be completed), namely, deter-
“Symbol L, is used for both the Ngram model and the set of all utterances mining the phySICaI charactgrlsncs of the suspect to issue
produced by this model. an arrest warrant and tracking the suspect's whereabouts

P(Lili) ~ P(Lil @ wn) [(o0n) 220 0] (5)

nw, €Ly




standing task has been carried over the pre-defined four

.Word Accuracy dialog states according to the model delivered by equa-
ASR grammar baseline) adapt-1| adapt-2 tion 5. Understanding accuracy is computed as the number
phrase-unigram 71.1% 73.1% of correctly classified state labels over the total number of
bigram _ 73.9% | 74.8% | 74.1% state labels. The overall J, &) understandingccuracy
phrase-bigram | 76.2% 77.0% from speech using a closed-vocabulary trigramglaage
trigram 77.8% | 77.7% | 78.0% model (P(Ly|i;) in equation 5) i91.8%, achieving at4%
phrase-trigram | 77.7% 78.1% error rate reduction over the baseline system (85.4%). The

understanding performances per stateare not uniform
Table 3: Word Accuracy before and after language adapta-nd range between 4%op ) and 19% profile ). We
tion and for different language models. expect, that a more accuratederstanding model based
on A}, could outperform the model estimates based on the
OOQV factor ¢,,,) factorization.

(in one of fifty U.S. states). The game is rich in dialog
subtasks including: navigation and multiple queries (talk 7. CONCLUSION

to ca.lrt.oon characters on the game screen), database € this paper we have proposed a novel adaptation scheme
try (filling Fhe suspects p'roflle), and databasg search (.|O°kfor language modeling in the framework of spoken lan-
up clues na geograph!cal daftabase). Using t'he dlalogguage system. Data sparseness is a serious problem for
ZQVIV notation !ntroduceq N Sect|or:]|4 we have dﬁmed four stochastic language modeling for large vocabulary systems.
olla O% states:top (na;]/lgagon l;em que‘rjlesplro e Moreover, the sparseness problem is even more acute in
(database entrygearch — (data ase). antfavel  (to a presence of data fragmentation, and that is the case of spo-
US gtate). For a better understanding of the semantic deken dialog systems. For these reasons, a major challenge
scr|pt|9nhof thg dialog statﬁs see [1].dA” cr(])IIected Utter i stochastic language modeling is to exploit all available
ancesi; have been manually assigned to the correct state i, yypjje providing reliable probabilities conditioned on

5k .th.at they trigger accgrding to the détion of Z;. The the dialog state. In this work, we have shown, that our
fraining setl J, 7, consists of 6039 utterances collected adaptation scheme is effective in delivering statistically re-

from 51 speakers and the test set con5|§ts of 2050, Utteryiaple probability estimates and increasing the language
ances from 20 speakers. In Table 1 the differences in OUt'coverage at any staig

of-vocabulary rate and test set perplexity is shown for the
prompt based states. Note the uneven distribution and 8. REFERENCES
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