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ABSTRACT 2. THEORY PREPARATION

Score normalization has become necessary for speakerLet X represent ad-dimensional feature vector extracted
verification systems, but general principles leading to from a measurement (an utterance)p(X|A) and p(X|R) the

optimum performance are lacking. In the paper,
theoretical analyses to optimum normalization are given.

likelihood functions (the probability density functions) of X
for the claimed speaker and the imposters, respectively,

Under the analyses, four existing methods based on where A means Acceptance and R Rejection Though

likelihood ratio, cohort, a posteriori probability and pooled
cohort are investigated. Performance of these methods in
verification with known imposters, robustness for different
imposters and separability of the optimal threshold from

minimizing EER(Equal Error Rate) of FAR(False
Acceptance Rate) and FRR(False Rejection Rate) has been
the most widely used objective function for optimization in
literatures, minimizing FAR (or FRR) with fixed FRR (or

the imposter model are discussed after experiments based FAR) is also necessary in practice to enable different

on a database of 100 speakers.

1. INTRODUCTION

security levels of a verification system. The optimum
decision rules of the normalization in the two cases are
given in the following Theorem 1 and 2 (to save size, proofs
of all theorems are eliminated). It is noted that the errors to

Score normalization has become a necessary step tOpe minimized in the two cases are both different from the

implement a speaker verification system. In recent years,
methods based on likelihood ratio[1l], cohort[2,4], a
posteriori probability[5] and pooled cohort[3] have been

Bayes error[6] (which is the sum of FAR and FRR) or other
errors suggested for classification systems.

proposed. Though effectiveness of these methods has beeheorem 1: The decision rule

verified with researcher-dependent experiment databases,
general principles for normalization leading to optimum
performance are lacking.

Since speaker verification is essentially a special case of

statistical pattern recognition, the normalization can be
generally explained according to some fundamental
characteristics of the latter. Simply, there exist three
elements ofa speaker model, an imposter modahd a

decision rule with a discrimination function and a threshold
to construct a speaker verification system. A speaker model

P(XTA)
P(X|R)
else X O R(t) (Rejection

if >t then X O A(t) (Acceptane);

1)
minimizes EER whent is determined by

PAYf, ., POX IRIX = P(R)[,_ p(X | A)AX,  (2)

where, P(A) and P(R) are the a priori probabilities for

is built for a claimed speaker based on statistical analyses acceptanceand Rejectionrespectively, andA(t) and R(t) the

to his sample data obtained from registration. An imposter
model, also known asspeaker background mod&] or

antispeaker mod@4], should give a correct description to
characteristics of the imposters feigning the claimed
speaker. But in real world it is by no means predictable
about the imposters. So existing methods take data from
speakers of a predefined set
imposters. As to a decision rule, a discrimination function

to emulate the possible

corresponding regions in feature space. Eq.(2) is
FAR(t)=FRR(t). Since the dimensional oK is often over one
thoustand, the integrals in (2) are difficult to calculate. In
practice, the optimal t is determined from FAR(t)=FRR(t),
where FAR(t) and FRR(t) are obtained through tests on
samples.

Theorem 2: The decision rule shown in Eq.(1) minimizes

enables a similarity measure between a measurement and aFAR (or FRR) for fixed FRR (or FAR) when t is
model, and a threshold is necessary to make the decisiondetermined by

that the measurement is whether from the claimed speaker
or not. When the decision rule depends not only on the

speaker model but also on the imposter model, the process

to make a relative similarity measure corresponds to the
so-callednormalization.

P(RY] ., PXIAYAX=C (0r P(A), . p(X [R)dX =¢), (3)

where, c is the predetermined value for FRR (or FAR).



It is noticed that when p(X|A) and p(X|R) are known, 3 2. Rosenberg Method 1[2][4]
theoretically, an optimum normalization can be

implemented. But p(X|R) have to be predicted, and the Rosenberg et al. used theohort concept in a decision rule.
optimal threshold have to be calculated using a great They defined

number of samples even whep(X|R ) gets known. Besides _ B ;

the likelihood function, the a posteriori probability is the LR; =log p(X | S) ~log[stat p(X | Cohor{)] 8)
alternative score measure. The following Theorem 3 shows

the equivalence between the two score measures.

where, Cohort means to find a subset fron{Zij} except for
Si, to form the imposter model. In simple cases, a cohort is
organized by individual speakers, that is, on& means one

Theorem 3: The decision rule
if P(A|X)=s then X O A(t) (Acceptane);

else X D R(t)(Rejection) (4) Sr, r=1~I, r#. stat means an arithmetic operator such as
mean, medium, etc. When the speaker number of the

) ) ) Cohort set isI-1 and the stat operator maximum, the
is equivalent to Eq. (1) whers andt satisfy method become the same as Higgins method. When all
- Pt ) imposters are with the same likelihood function the method

P(At+P(R)’ is optimum theoretically no matter what the details of

Cohort and statare. Depending on different cohort, various
imposter models can be emulated.

where, P(A|X) is the a posteriori probability for Acceptance .
which is calculated by 3.3. Matsui Method|[5]

P(A| X) = _PUARX A
P(A)P(X [ A)+ PRIP(X[R)

Matsui et al. suggested to use the a posteriori probability in
a decision rule as shown in Eqg. (4), where the a posteriori
probability is calculated by
P XS X
P(S | X) =P CDPXIS) . P(X1S) ©)
ZP(Sr)p(X IS) (X IZSr)

(6)

3. METHOD INVESTIGATION

A speaker verification system is designed based on a set of

training samples that are represented by{Zij}, wherei=1~I

means speakers ang=1~J utterances. Si represents allJ ) .
samples of speakeri. When evaluating a normalization The. methoc_i build a pooled model to make calculation
method, if the test set is the same 4Zij}, the test is calleca  ©aSier, that is, samples from gll speakers are taken for from
closed set tesbtherwise, an open set testt is obvious that ~©ONe virtual speaker and are inputted to a HMM to get a
the actual situation corresponds to an open set test. But Unique likelihood function. According to Theorem 3, the
because we can never give an exact prediction for imposters,éthod works as an optimum decision rule theoretically.
any open set test can hardly reflect all actual situations. But a premise condition is that the calculated a posteriori

Generally speaking, a closed set test shows the performanceProbability is correct, that is

of a method when imposters are known, and an open set ' 1 '
test also shows how a method is robust to different ZP(S')p(X IS) = T p(X I;Sr) (10)
imposters. Existing methods utilize different sets of
samples when building their imposter models.
S is satisfied. Ideally, when all speakers are with the same a

3.1. Higgins MethOd[l] priori probabilities and they are independent to each other,
Higgins et al. suggested to use a simple likelihood ratio to (10) exists. But in practice it is not ensured that if a HMM
compare to a threshold in a decision rule. That is holds such a linearity property.

LR, =log p(X |§) - max log p(X|S). ) 3.4. Rosenberg Method 2[4]

In fact an imposter model can be built by pooling an

. . . o arbitry subset of {Zij}. Referring to Matsui method, a
If all possible imposters are with the same likelihood acision rule can be implemented optimally by:
function the method is optimal theoretically. Otherwise, the '

method emulates a serious situation for  possible LH, =log p(X | ) —log p(X | \ S) (11)
imposters and its imposter model is in fact not represented r AT

by a likelihood function because the integration ofmax

p(X|Sr) (r=1~1,r#) over feature space is greater than 1.



The only difference between the method and Matsui
method is that whether the samples of the claimed speaker
are pooled when building the imposter model.

4. EXPERIMENTSE

Experiment database consists of utterances recorded by
100 speakers, 50 males and 50 females. Each speaker wa
asked to utter 4 digits that was prompted at random each
time, and 70 times of the utterances are recorded. After
extraction, all feature vectors are grouped into two sets: Set
A---speaker 1-25 with their first 30 times utterances; Set
B---speaker 1-100 with their latter 40 times utterances.

4.1. Results of Experiments

Three experiments are executed for each of the four
methods. FAR(t) and FRR(t) results are shown in Fig.1-4,

respectively, where (a) is the results of a closed set test with
Set A; (b) the results of an open set test with Set A used for

Rosenbergl: 86.525.8; Matsui: -8.0t26.9; Rosenberg2:
185.Gt23.5. When the three points are set as thresholds,
small values of FAR and FRR in (b) reflect better
robustness. The results are as follows: Higgins:
FAR(%)=(48.4, 13.9, 1.1), FRR(%)=(0, 0, 0); Rosenbergl:
FAR(%)=(0.60, 0.05, 0), FRR(%)=(0.2, 2.2, 17.1); Matsui:
FAR(%)=(0.51, 0.01, 0), FRR(%)=(0.2, 1.1, 15.7);
Rosenberg2: FAR(%)=(0.74, 0.15, 0.02), FRR(%)=(1.8, 6.1,
19.4). The order from the best is Matsui > Rosenbergl >
Rosenberg2 > Higgins. (3) Though the optimal threshold is
in nature dependent on the imposter model, it is hoped the
dependency is weak in order to set a unique threshold
reliably for different imposter models. The optimal
thresholds in (a) and (c) are as follows: Higgins: -20.0/-18.8;
Rosenbergl: 86.5/76.0; Matsui: -8.0/186.0; Rosenberg2:
185.0/2.2. So the order from the best is Higgins
Rosenbergl > Matsui = Rosenberg?2.

5. CONCLUSION

training and Set B for testing; (c) the results of a closed set goyr existing methods are investigated under analyses to
test with Set B. At all cases, a claimed speaker is one from optimum normalization. Though theoretically these

the speaker 1-25. But imposters are from the remains of methods can become optimal, their premise conditions
speaker 1-25 at (a), and from speaker 26-100 at (b) and (C). yequired are hardly to be satisfied in practice. These

Defects of the experiments are in speaker size and in
unbalance for claimed speakers and imposters. Samples
from 25+75 speakers may be too sparse to reflect a whole
distribution in feature space and deficiency of samples for a
claimed speaker makes the results of FRR unreliable.

4.2. Discussion

we compare the four methods in the following three aspects.

(1) Results for closed set tests as shown in (a) and (c) reflect

the performance of a method when the imposters are
known. Also they give a measure to how much a method
depends on the sample data when building models. In our
case, it is found that the order is Higgins > Rosenbergl >
Matsui > Rosenberg2. Since the sample data for a claimed
speaker are relatively less (or concentrated), the order
means that using samples from few neighbors as imposters
are effective than pooling samples of many speakers. At the
case of pooling, samples from the claimed speaker himself
should be included to make the imposter model not so far
from the claimed speaker model. (2) At the cases of (a) and
(b), models for claimed speakers and imposters are the
same. So difference of the results between (a) and (b) is a
measure to the robustness of a method when the actual
imposters are different from the predicted ones. Since in
practice (a) corresponds to the design step and (b)
application step of a method, this robustness is essential to
ensure a method to work at a stable state. Some
guantitative descriptions are possible for comparison.
From (a) we can get the threshold (score) with respect to
EER (when there are more than one, their medium value
are adopted), and at its two sides, the point with a distance
of 5%(maximum score-minimum score) is also picked out.
In detail, the scores are as follows: Higgins: -20#38.0;

methods are compared in the following three aspects:
performance for known imposters, robustness for different

imposters and separability of the optimal threshold from

the imposter model.
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Figure 1. Results of Higgins Method
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Figure 2. Results of Rosenberg Method 1
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Figure 3. Results of Matsui Method
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Figure 4. Results of Rosenberg Method 2



