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ABSTRACT

Score normalization has become necessary for speaker
verification systems, but general principles leading to
optimum performance are lacking. In the paper,
theoretical analyses to optimum normalization are given.
Under the analyses, four existing methods based on
likelihood ratio, cohort, a posteriori probability and pooled
cohort are investigated. Performance of these methods in
verification with known imposters, robustness for different
imposters and separability of the optimal threshold from
the imposter model are discussed after experiments based
on a database of 100 speakers.

1. INTRODUCTION

Score normalization has become a necessary step to
implement a speaker verification system. In recent years,
methods based on likelihood ratio[1], cohort[2,4], a
posteriori probability[5] and pooled cohort[3] have been
proposed. Though effectiveness of these methods has been
verified with researcher-dependent experiment databases,
general principles for normalization leading to optimum
performance are lacking.

Since speaker verification is essentially a special case of
statistical pattern recognition, the normalization can be
generally explained according to some fundamental
characteristics of the latter. Simply, there exist three
elements of a speaker model, an imposter model and a
decision rule with a discrimination function and a threshold
to construct a speaker verification system. A speaker model
is built for a claimed speaker based on statistical analyses
to his sample data obtained from registration. An imposter
model, also known as speaker background model[3] or
antispeaker model[4], should give a correct description to
characteristics of the imposters feigning the claimed
speaker. But in real world  it is by no means predictable
about the imposters. So existing methods take data from
speakers of a predefined set  to emulate the possible
imposters. As to a decision rule, a discrimination function
enables a similarity measure between a measurement and a
model, and a threshold is necessary to make the decision
that the measurement is whether from the claimed speaker
or not. When the decision rule depends not only on the
speaker model but also on the imposter model, the process
to make a relative similarity measure corresponds to the
so-called normalization.

2. THEORY PREPARATION

Let X represent a d-dimensional feature vector extracted
from a measurement (an utterance), p(X|A) and p(X|R) the
likelihood functions (the probability density functions) of X
for the claimed speaker and the imposters, respectively,
where A means Acceptance and R Rejection. Though
minimizing EER(Equal Error Rate) of FAR(False
Acceptance Rate) and FRR(False Rejection Rate) has been
the most widely used objective function for optimization in
literatures, minimizing FAR (or FRR) with fixed FRR (or
FAR) is also necessary in practice to enable different
security levels of a verification system. The optimum
decision rules of the normalization in the two cases are
given in the following Theorem 1 and 2 (to save size, proofs
of all theorems are eliminated). It is noted that the errors to
be minimized in the two cases are both different from the
Bayes error[6] (which is the sum of FAR and FRR) or other
errors suggested for classification systems.

Theorem 1: The decision rule

minimizes EER when t is determined by

where, P(A) and P(R) are the a priori probabilities for
Acceptance and Rejection respectively, and A(t) and R(t) the
corresponding regions in feature space. Eq.(2) is
FAR(t)=FRR(t). Since the dimensional of X is often over one
thoustand, the integrals in (2) are difficult to calculate. In
practice, the optimal t is determined from FAR(t)=FRR(t),
where FAR(t) and FRR(t) are obtained through tests on
samples.

Theorem 2: The decision rule shown in Eq.(1) minimizes
FAR (or FRR) for fixed FRR (or FAR) when t is
determined by

where, c is the predetermined value for FRR (or FAR).
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It is noticed that when p(X|A) and p(X|R) are known,
theoretically, an optimum normalization can be
implemented. But p(X|R) have to be predicted, and the
optimal threshold have to be calculated using a great
number of samples even when p(X|R ) gets known. Besides
the likelihood function, the a posteriori probability is the
alternative score measure. The following Theorem 3 shows
the equivalence between the two score measures.

Theorem 3: The decision rule

is equivalent to Eq. (1) when s and t satisfy

where, P(A|X) is the a posteriori probability for Acceptance,
which is calculated by

3. METHOD INVESTIGATION

A speaker verification system is designed based on a set of
training samples that are represented by {Zij} , where i=1~I
means speakers and j=1~J utterances. Si represents all J
samples of speaker i. When evaluating a normalization
method, if the test set is the same as {Zij}, the test is called a
closed set test; otherwise, an open set test. It is obvious that
the actual situation corresponds to an open set test. But
because we can never give an exact prediction for imposters,
any open set test can hardly reflect all actual  situations.
Generally speaking, a closed set test shows the performance
of a method when imposters are known, and an open set
test also shows how a method is robust to different
imposters. Existing methods utilize different sets of
samples when building their imposter models.

3.1. Higgins Method[1]

Higgins et al. suggested to use a simple likelihood ratio to
compare to a threshold in a decision rule. That is

If all possible imposters are with the same likelihood
function the method is optimal theoretically. Otherwise, the
method emulates a serious situation for  possible
imposters and its imposter model is in fact not represented
by a likelihood function because the integration of max
p(X|Sr) (r=1~I,r≠i) over feature space is greater than 1.

3.2. Rosenberg Method 1[2][4]

Rosenberg et al. used the cohort concept in a decision rule.
They defined

where, Cohort means to find a subset from {Zij}  except for
Si, to form the imposter model. In simple cases, a cohort is
organized by individual speakers, that is, one k means one
Sr, r=1~I, r≠i. stat means an arithmetic operator such as
mean, medium, etc. When the speaker number of the
Cohort set is I-1 and the stat operator maximum, the
method become the same as Higgins method. When all
imposters are with the same likelihood function the method
is optimum theoretically no matter what the details of
Cohort and stat are. Depending on different cohort, various
imposter models can be emulated.

3.3. Matsui Method[5]

Matsui et al. suggested to use the a posteriori probability in
a decision rule as shown in Eq. (4), where the a posteriori
probability is calculated by

The method build a pooled model to make calculation
easier, that is, samples from all speakers are taken for from
one virtual speaker and are inputted to a HMM to get a
unique likelihood function. According to Theorem 3, the
method works as an optimum decision rule theoretically.
But a premise condition is that the calculated a posteriori
probability is correct, that is

is satisfied. Ideally, when all speakers are with the same a
priori probabilities and they are independent to each other,
(10) exists. But in practice it is not ensured that if a HMM
holds such a linearity property.

3.4. Rosenberg Method 2[4]

In fact an imposter model can be built by pooling an
arbitry subset of {Zij} . Referring to Matsui method, a
decision rule can be implemented optimally by:
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The only difference between the method and Matsui
method is that whether the samples of the claimed speaker
are pooled when building the imposter model.

4. EXPERIMENTSE

Experiment database consists of utterances recorded by
100 speakers, 50 males and 50 females. Each speaker was
asked to utter 4 digits that was prompted at random each
time, and 70 times of the utterances are recorded. After
extraction, all feature vectors are grouped into two sets: Set
A---speaker 1-25 with their first 30 times utterances; Set
B---speaker 1-100 with their latter 40 times utterances.

4.1. Results of Experiments

Three experiments are executed for each of the four
methods. FAR(t) and FRR(t) results are shown in Fig.1-4,
respectively, where (a) is the results of a closed set test with
Set A; (b) the results of an open set test with Set A used for
training and Set B for testing; (c) the results of a closed set
test with Set B. At all cases, a claimed speaker is one from
the speaker 1-25. But imposters are from the remains of
speaker 1-25 at (a), and from speaker 26-100 at (b) and (c).

Defects of the experiments are in speaker size and in
unbalance for claimed speakers and imposters. Samples
from 25+75 speakers may be too sparse to reflect a whole
distribution in feature space and deficiency of samples for a
claimed speaker makes the results of FRR unreliable.

4.2. Discussion

we compare the four methods in the following three aspects.
(1) Results for closed set tests as shown in (a) and (c) reflect
the performance of a method when the imposters are
known. Also they give a measure to how much a method
depends on the sample data when building models. In our
case, it is found that the order is Higgins > Rosenberg1 >
Matsui > Rosenberg2. Since the sample data for a claimed
speaker are relatively less (or concentrated), the order
means that using samples from few neighbors as imposters
are effective than pooling samples of many speakers. At the
case of pooling, samples from the claimed speaker himself
should be included to make the imposter model not so far
from the claimed speaker model. (2) At the cases of (a) and
(b), models for claimed speakers and imposters are the
same. So difference of the results between (a) and (b) is a
measure to the robustness of a method when the actual
imposters are different from the predicted ones. Since in
practice (a) corresponds to the design step and (b)
application step of a method, this robustness is essential to
ensure a method to work at a stable state. Some
quantitative descriptions are possible for comparison.
From (a) we can get the threshold (score) with respect to
EER (when there are more than one, their medium value
are adopted), and at its two sides, the point with a distance
of 5%(maximum score-minimum score) is also picked out.
In detail, the scores are as follows: Higgins: -20.0±38.0;

Rosenberg1: 86.5±25.8; Matsui: -8.0±26.9; Rosenberg2:
185.0±23.5. When the three points are set as  thresholds,
small values of FAR and FRR in (b) reflect better
robustness. The results are as follows: Higgins:
FAR(%)=(48.4, 13.9, 1.1), FRR(%)=(0, 0, 0); Rosenberg1:
FAR(%)=(0.60, 0.05, 0), FRR(%)=(0.2, 2.2, 17.1); Matsui:
FAR(%)=(0.51, 0.01, 0), FRR(%)=(0.2, 1.1, 15.7);
Rosenberg2: FAR(%)=(0.74, 0.15, 0.02), FRR(%)=(1.8, 6.1,
19.4). The order from the best is Matsui > Rosenberg1 >
Rosenberg2 > Higgins. (3) Though the optimal threshold is
in nature dependent on the imposter model, it is hoped the
dependency is weak in order to set a unique threshold
reliably for different imposter models. The optimal
thresholds in (a) and (c) are as follows: Higgins: -20.0/-18.8;
Rosenberg1: 86.5/76.0; Matsui: -8.0/186.0; Rosenberg2:
185.0/2.2. So the order from the best is Higgins =
Rosenberg1 > Matsui = Rosenberg2.

5. CONCLUSION

Four existing methods are investigated under analyses to
optimum normalization. Though theoretically these
methods can become optimal, their premise conditions
required are hardly to be satisfied in practice. These
methods are compared in the following three aspects:
performance for known imposters, robustness for different
imposters and separability of the optimal threshold from
the imposter model.
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Figure 4. Results of Rosenberg Method 2
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Figure 3. Results of Matsui Method
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Figure 1. Results of Higgins Method
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Figure 2. Results of Rosenberg Method 1


