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ABSTRACT and non-keyword rejection using general speech models. In [2],
the likelihood of a filler (or garbage) model was used to construct
In this paper, we propose to use an utterance length (duration) descore for detecting keywords. In [3], a set of features including
pendent threshold for rejecting an unknown input utterance witthe likelihood of a garbage model were used to form a classifier
a general speech (garbage) model. A general speech model, c@girejecting both non-keywords and recdtipn errors. Recently,
paring with more sophisticated anti-subword models, is a morgnti-subword models have been used to perform utterance verifi-
viable solution to the utterance rejection problem for low-cost apcation. In [4] a discriminatively trained, vocabulary independent
plications with stringent storage and computational constraintgtterance verification using anti-subword models was proposed.
However, the rejection performance using such a general modghis method attempts to reject speech utterances contains no key-
with a fixed, universal rejection threshold is in general worsgvords and keywords but incorrectly recognized. In other work
than the anti-models with hlgher discriminations. Without addin%, 6], discriminative training procedure [7] was used to train anti-
complexities to the rejection algorithm, weopose to vary the digit models to improve the rejection performance for connected
rejection threshold according to the utterance length. The expetiigit recognition. In [6], techniques were proposed to adapt the re-
mental results show that significantimprovement in rejection pefection threshold to improve rejection performance in mismatched
formance can be obtained by using the proposed, length depefxining and testing conditions. Rejection of a keyword is usually
dent rejection threshold over a fixed threshold. We investigatéonducted either at segment or utterance level.
utterance rejection in a command phrase recognition task. The
equal error rate, a good figure of merit for calibrating the perforin this paper, we address the issue of improving rejection perfor-
mance of utterance verification algorithms, is reduced by almostance without using anti-models for rejection. The storage and/or
23% when the proposed length dependentthreshold is used. computational complexity constraints of a “thin” DSP-based rec-
ognizer justify such an investigation. Typical consumer prod-
1. INTRODUCTION ucts like cellular phones, digital answering machines in which
enhanced features like automatic speech reitiognare highly
In this paper, we have investigated the problem of rejecting an udesirable as long as only minimal cost is added. Under the above
known input utterance using a general speech model. The statentioned physical constraints, we investigate how to improve re-
of the art speech recogjion systems, especially one operating injection performance using only a simple, general speech (garbage)
an “open-mic” mode generally need a rejection algorithm to aanodel.
cept or reject a recognized utterance. The rejection is typically
formulated as a hypothesis testing procedure. In statistical hyhe probability of alternativeypothesis is computed based upon
pothesis testing, the null hypothesié,, that the input speech the general speech (garbage) model while the null hypothesis is
utteranced = &,,68,,...,087 is correctly recognized, is tested evaluated using the phone or word models. We propose the use of
against the alternate hypothesi;, that the input utterance is a threshold; which depends upon the utterance length. We show
incorrectly recognized. Note that alternate hypothesis includdBat for our recognition task, significant rejection performance im-
cases where an in-grammar utterance is classified incorrectly Bgovement can be obtained, particularly for short utterances by
other in-grammar phrases and all out-of-grammar utterances. Using rejection threshold that varies with the length of input ut-
the probability distribution for the null and alternatiypoth-  terance. We investigate utterance rejection in a command phrase
esis are known exactly, then according to the Neyman-Pearstgcognition task. A database of digit strings is used for rejecting
Lemma, the optimal test (in the sense of maximum power tes@ut-of-vocabulary (OOV) utterances.
is the likelihood ratio test. The null hypothesidy, is accepted
if the likelihood ratio between the null and alternate hypothesis 2. REJECTION USING UTTERANCE
exceeds a dical threshold, rejected, otherwise[1]. This criterion LENGTH DEPENDENT THRESHOLD
expressed in log-domain and normalized by the utterance length
is, For our HMM-based speech recdtion system, the log-
L, = l(log P(O|Ho) —log P(O|H1)) > n, 1) probability of the nput utterance given the null-hypothesis,
. T i log P(O|Hy), is estimated as the log-likelihood of the recognized
whereT is the length of the input utterancieg P(O|Ho) and  erance for the decoding grammar. Figure 1 shows an example

log P(O[H,) are the log-probability of thenput utterance for ot 5 grammar which can be used to recognize one different
the null hypothesis and the alternate hypothesis, respectively, agfages.

7 is thecritical thresholdof the test.

o ) . The log-likelihood of the input utterance given the alternate hy-
Significant work has been done in the areas of keywordtisygo
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Figure 1: Phrase grammar.
Figure 3: Scatter plot of the modified likelihood ratio for in-

L . ammar command phrases. These include the correctly recog-
pothesis, is computed over a three state hidden Markov modg[r and p . y 9
nlged as well as incorrectly recognized utterances.

trained on a large speech database. This model, known as
garbage model, represents the broad general characteristics of

speech signals. Previously, single state general speech model wae normalization used in the equation is also an implicit normal-
similarly used for speaker verification [8]. In our experimentsjzation by the utterance length. This confidence measure has been
the three-state model (with same topology as sub-word modelg$ed in [9] for verbal information verification. Figure 3 shows a
are used as a generic phoneme or garbage model. we found in saatter plot of the modified likelihood ratio as a function of the
experiments that the single-state model did not perform as well agterance length, for a database of command phrases, given the
the three-state garbage model. A grammar shown in figure 2 g®@mmand phrase grammar. The command phrases are used as
used to compute the log-likelihood of the input utterance, givei-grammar utterances.

that it belongs to the alternate hypothesis. _ o _
Figure 4 shows a scatter plot of the likelihood ratios for out-of-

Note that in Eq. 1, the utterance length is used as a normalizeecabulary digit string utterances. Digit strings are used in this
tion factor. The rejection criterion is then given by the followingstudy as out-of-vocabulary (OOV) utterances. Several points can
equation. be noted from the two figures.

LT { Z 17’ accept’ (2)

otherwise, reject 1. The likelihood ratio for in-grammar utterances is mostly
positive for all utterance lengths. However, the likelihood
ratio for out-of-vocabulary utterances, is negative for long
utterances while a significant number of short utterances

NULL have positive likelihood ratios.

2. For long utterances, the distribution of likelihood ratios has
smaller standard deviation than the standard deviation for
short utterances.

gbg #

When more flexible grammar such as a free-phone decoding is
' used, more alternative search paths are allowed and higher like-

lihood values can thus be obtained than a more rigid grammar.

NULL Also, while pruning techniques like beam search can become

more effective when the decoding search is deep into the utter-
ance, the phrase grammar of the null hypothesis presents very

Figure 2: Garbage loop grammar used to obtain the likelihoogitie constraint in short utterance decoding. The garbage loop
of alternative hypothesis. Note that “gbg” represents the garbag@ammar for the alternative hypothesis, on the other hand, im-
model and “#" represents the background (silence) model.  poses more or less uniform decoding constraints, independent of
the utterance length. As a consequence of varying level of con-

In this paper, we have used the following modified likelihood ratiastraints for the null and alternate hypothesis, the likelihood ratio

measure, normalized by the magnitude of the log-likelihood valugnows different distribution for different utterance lengths. As a
|log P(O|Ho)| and expressed as a percentage, as described bggy|t rejection threshold should be chosen as a function of utter-

low. ance length to obtain a better performance. we propose to model
L, = (log P(O|Ho) — log P(O|H1)) 100, (3) the threshold; as a polynomial function of the utterance length.
|log P(O|Ho)]| That s, the threshold is
We find that the modified likelihood ratio measure in Eq. 3 tends
to be more resilient to changes of grammar used iogaition. NT) = anaa T 4 anoaT" > 4+ T a0, (4)



wheren — 1 is the order of the polynomial, and, 0 < : < n are
the coefficients of the polynomial. Note that= 2 results in a
first-order, linear approximation. Further simplification leads to a sof
piece-wise constant function. L8t = 7;,0 < ¢ < N represent
a set of utterance lengths such that
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o | Figure 5: Receiver operating characteristic when a constant
threshold is used for all utterance lengths.

were used in conjunction with the digit strings as alternative hy-
pothesis (since the misrecognized utterances should also be re-
jected).

((logP(O|HO)-logP(O|H1))/|logP(O|HO)|) *100
~

Figure 5 shows the receiver operating characteristics (ROC) as a
function of the rejection threshold when a single threshold is used
to make an accept/reject decision.
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In our experiment we patrtition the set ofiut utterances into sev-
Figure 4: Scatter plot of modified likelihood ratio for a command-eral bins according to their utterance lengths. Both the command
phrase grammar with digit strings as OOV utterances. phrases and the digit strings are divided into two approximately
equal sets. The first set of sentences from the phrase and digit
Next we describe our experimental setup and the resultant reje@atabases are used to derive rejection thresholds for achieving
tion performance using the proposed algorithm. We compare tigglual error rate. The equal error rate rejection thresholds so de-
rejection performance between a fixed and the proposed utterarii#ed are then used to evaluate the performance on the second set
length dependent thresholds. of sentences. Table 1 shows the Type | and Type Il errors when
a single, fixed threshold is used for all utterances. Table 2 shows
the errors when different rejection thresholds are selected accord-
ing to the interval to which the utterance length belongs. Several
In our experiments, we use mono-phone (i.e., contextemarkscanbe made:
independent), sub-word units. Each sub-word unit is a modeled
as 3-state hidden Markov model with 8 Gaussian mixture com- 1.
ponents per state. Each digit is modeled as a 16-states HMM

and each state is parameterized by 8 mixture Gaussian compo- . ) .
nents. The background (silence) model is a single-state, 16-2- A comparison of the first rows in table 1 and table 2 shows

mixture component model. Once every 10 ms, twenty-five fea- :Eatntgg[)e flrsr?}l re)dléctlglrr;cc))fstegg;/s fo;hsehzﬁgffgjgggsn(lﬁis
tures (12-cepstral, 12-delta cepstral and 1 delta-energy) are com- a ames) by o

3. EXPERIMENTAL RESULTS

Short utterances contribute towards majority of the overall
errors.

puted for a frame of 30 ms speech samples. A separate 3-state,
64-mixtures per state, general speech (garbage) model is trained
using digit strings and command phrases.

3.
Atest database of 1,638 phrases is used to perform the recognition

test. The command phrases are in-grammar sentences. A 1,327
connected digit strings are used for testing out-of-vocabulary re-
jection. The digit database consists of strings of varying lengths
(1, 4,7, and 10 digits). 4
A real-time recognizer was used for rec@@m experiments us-

ing sequential Cepstral Mean Subtraction (CMS) to equalize pos-

very long utterances (longer than 450 frames) is about 26%.
The performance for utterances with intermediate lengths
(between 200 and 450 frames) is basically unchanged.

Table 2 shows that lower rejection thresholds should be used
for longer utterances. This is consistent with the proposed
algorithm in this paper that the rejection threshold should be
modeled as a length dependent variable, rather than a con-
stant.

There is an overall improvement of 22.5% in rejection per-
formance.

sible channel difference between training and testing data. Thegure 6 shows the equal error rate threshold as a function of
baseline recognitioaccuracy for the phrase database is 90.5%he utterance length. Note that the equal error rate threshold
For rejection experiments, the misrecognized utterances (9.5296y shorter utterances is significantly higher than the fixed, sin-



24 Length Threshold #in Error/Total Utterances
22 (in frames) Typel [ Typell | Total
o 0-200 2.29 46/273| 44/256| 90/529
Ler 200-300 1.18 16/212| 5/65 19/277
e 300-450 0.81 18/145| 22/188| 40/333
Siab | comeoaesen - >450 0.57 11/111 | 22/232| 33/333
| Total ] | 91/741] 93/741] 184/1482]
WL
osl Eaual-Eror Rare:12.4% Table 2: Rejection performance on test database for different ut-
ol terance lengths for a different equal error rate rejection threshold
' for each utterance length interval.
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Figure 6: A comparison of the equal error rate threshold Whell;zlefore the end of an utterance. Just like rejection, detection of

a single threshold is selected with the variable equal error raFetparia: Val{g ghrased IS tr?kc])re glf:gulrt] mlctiht? earllelrl staﬁget_than
threshold for different utterance length intervals. ater. A ‘engin-dependentihreshold should be equally ellective In

improving the barge-in detection, especially in the early part of

the utterance.
gle threshold. For longer utterances, the length dependent equal

error rate threshold is lower than the fixed threshold. The length dependent threshold if incorporated explicitly in a

rejection algorithm where more sophisticated, discriminatively

It is important to point out that a different approximation to theyrained anti-models are used, the high performance can be even
polynomial of equation 4 (other than the piecewise constant agyther improved.

proximation used in our experiments) could be employed to fur-
ther enhance the performance. In particular, a first-ordered, linear
approximation should be particularly beneficial for shorter utter-
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