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ABSTRACT Here we describe a new algorithm for the estimation of the prob-
_ _ _ __ ability distributions of SCFGs from thee-best derivations. This
The use of the Inside-Outside (10) algorithm for the estimatiorygorithm considers more information than the VS algorithm,
of the probability distributions of Stochastic Context-Free Graman( therefore the SCFGs are, in general, better estimated. It is
mars (SCFGs) in Natural-Language processing is restricted dugt necessary to incorporate deductive information to the sam-

to the time complexity per iteration and the large number of itergp|e in contrast to [8]. The number of iterations increases as the
tions that it needs to converge. Alternatively, an algorithm baseghjue ofk grows up.

on the Viterbi score (VS) is used. This VS algorithm converges

more rapidly, but obtains less competitive models. We describe the following section, some problems which are related to the
here a new algorithm that only considers #hest derivations 10 and VS algorithms are presented together with the notation
in the estimation process. The experimental results show thased. Next, the new estimation algorithm of SCFGs fromkthe
this algorithm achieves faster convergence than the 10 and bettezst derivations is proposed. Finally, the experiments illustrating
models than the VS algorithm. the behaviour of this algorithm are reported.

1. INTRODUCTION 2. NOTATION AND DEFINITIONS

Stochastic Context-Free Grammars (SCFGs) are an appealing AlContext-Free GrammaCFG)G is a four-tuple( N, 2, P, S),
ternative for Language Modeling in real tasks of Syntactic PatwhereN is a finite set of non-terminal symbolS, is a finite set
tern Recognition [7] and Natural Language Processing [3]. Thef terminal symbol{ N N'Y = §), P is a finite set of rules of the
reason for this can be found in the capability of SCFGsto expressrm A — a (A € N anda € (N U £)™) (we only consider
long-distance dependencies and to be potentially more compagammars with no empty rules) astlis the initial symbol(S €
than the n-gram models. However, the learning of SCFGs is stilV). A CFG in Chomsky Normal Form is a CFG in which the
an important obstacle for their application to language modetules are of the formd — BC or A — a (A, B,C € N and
ing. The most widely-used method for learning SCFGs is based € ¥). A left-derivationof z € 7 in G, is a sequence of
on the well-known Inside-Outside (IO) algorithm [2]. Unfortu- rulesd, = (p1,p2...,pm), m > 1 such that:(S & o, B
nately, the application of this algorithm presents important probs, .. 22 ) wherea; € (NUS)t, 1 < i < m — 1, and
!ems yvhich are accentuated in rea] tasks: the time complexity Pgr rewrites the left-most non-terminal of;_;. The language
gg:]?ltécr)geand the large number of iterations that are necessaryégnerated)yG is defined ad.(G) = {z € £* | § X z).

| . h lgorithm i L laorith A Stochastic Context-Free Gramm@@CFG)G; is defined as
An aternalee Fo tl e 10 algorit Im |_shan estlmz;l]tlon algorithm, pair (G, q) where G is a CFG andg : P —]0,1] is a
b?shed og tle V.'tﬁrb'. s;:ore (VhS aghorltom)l [2]'_;— € C.onverr?enc robability function of rule application such thatd € N:
oft e.V algorithm Is faster than the l. algorithm, since t ev we(vuz)+ 4(A = @) = 1. Letd, be aleft-derivation (deriva-
algorithm only considers the information obtained from the be . .
ion from now on) of the stringe, the expressioiN(4A —

lo(laczrl\rgtéon. However, the obtained SCFGs are, in general, WOY%E d,) represents the number of times that the rdle—s o

has been used in the derivatidp and N(A,d.) is the num-

In the same way, another alternative is to consider a modificatidf’ Of times that the non-terminal has been derived id..
of the 10 algorithm which learns SCFGs from partially bracketedVe define theprobability of the derivationd.. of tL‘eASI”’;gx
corpora [8]. This algorithm only considers the possible deriva@S: Pr(@;de | Gs) = 14 ayep (A = @) (Aends) _
tions according to partial parses defined on the bracketed corpl§! A= e a finite set of different derivations of the string
The results reported in [8] show that the convergence of this algd: e define theprobability of the stringz with respect to
fithm is significantly faster than the 10 algorithm. The drawback®> 881 Pr(z, Ax | Gs) = 32 ca, Pr(z,de | Gs).

of this proposal is the need for large corpora which are manuall{/nen Az is the set of all possible derivations then we have
parsed and bracketed. the probability of the stringz and is noted asPr(z | Gs) =

> va, Pr(z,dz | Gs). We define theprobability of the best



derivation of the stringz from a set of derivationsA, as: This behaviour suggests that the most probable derivations
Pr(z,A; | Gs) = maxg,ea, Pr(z,d, | Gs), and we de- greatly determine the evolution of the 10 algorithm. Under this
fine thebest derivationd,, as the argument which maximizes hypothesis, we propose an algorithm which only considerg the
this function. Thelanguage generatedby G, is defined as derivations with the largest probability. Ignoring the information
L(Gs) = {z € L(G)|Pr(z | Gs) > 0}. contained in the rest of the derivations could lead to a quicker

convergence, in a way similar to the VS algorithm. However,
Given an initial SCFG7s and a training sampl®, the probabil-  the algorithm we propose can improve the estimated models ob-
ities can be modified to obtain a new SCEG = (G,q') using tained by the VS algorithm.
the following expressioV(4A — a) € P):

3. ESTIMATION FROM A SET OF

¢(A—a)= DERIVATIONS
Y sca pr(;‘G 5 2va, N(A = o, de) Pr(z,d. | Gs) Given an initial SCFGG, a training samplé2 and a finite set
1 3 - @ Neg=U A, the following function can be used to modify
S N(A,d;)Pr(z,d, | Gs = Uzegn 2o
2even Paren) 2va, N4, de) Pr( G2 the probabilities¥(4 — a) € P):
This transformation attempts to improve the functionq,(A S a) =
Pr(Q | Gs) = [l,eqPr(z | Gs) guaranteeing that
Pr(Q | GY) > Pr(Q] G) [1]. Yoca Trmase) Sdeca, NA = 0, do)Pr(z,da | Gs)
1
In a similar way the probabilities can be modified with the ex-  2-2€2 P800 2z ea, N(A:da) Pr(z, do | Gs)
pressionV(A — a) € P): ®)
" ~ This transformation attempts to improve the function
d(A—>a) = 2 zen N( _”17 dw). @ Pr@4q | Gs) = [I.cqPr(z,Ax | Gs) guaranteeing
> eeaN(4,d2) that Pr(, Ao | G,) > Pr(Q,Aq | Gs). It can be proven

that this transformation guarantees that the estimated models are
where d,, is obtained by maximizing on all possible deriva-consistent [9].

tions of z. This transformation attempts to improve the func- = | ) ) ) )
tion Pr(Q do 1G) =11 oo t Itis important to note in this expression that the function be-
) .

Pr(x,c?m | G,) guaranteeing tha th ) o H
Pr(© 7 G') > Pr(©) ”f” G.). The estimated models are ing maximized changes depending on the number of derivations
ris da | Gs) 2 [ da | Gs)- . which are used. It can be observed that transformation (3) be-
consistent, such as is demonstrated in [9]. ; S
comes (1) wher\, has the maximum number of derivations of

The well-known 10 algorithm consists on applying transforma: While (3) becomes (2) when.. has only the best derivation

tion (1) iteratively on an initial SCFG7, until a local maxi- OVer all possible derivations. It is important to point out that

mum of the function being maximized is achieved. Likewisen© relation can be established between the function being maxi-

the VS algorithm consists in applying transformation (2) itergMized yvhen a different number of derivations is used in the trans-
tively until a local maximum of the function being maximized formation.
is achieved. Both algorithms are habitually formulated in a difs
ferent way to work with SCFGs in Chomsky Normal Form an

they can be effectively computed using a Dynamic Programmin
scheme. These algorithms have a time compleRiti2|n>| P|)

in each iteration, where is the length of the longest string in the

sample.

ased on transformation (3), an algorithm is proposed in which
hek-best derivations is computed in each iteration following the
gtrategy of the VS algorithm. This algorithm starts with an initial
grammar and then an iterative process begins. In each iteration,
the k-best derivations of each string in the sample are obtained.
The counts of the numerator and denominator of (3) are accumu-

In the estimation process, the VS algorithm considers only tHgt€d for those rules appearing in these derivations. At the end
derivation with largest probability. Only the structural informa-0f the iteration, transformation (3) is applied for each rule. This
tion contained in the best derivations of the training sample igerative process continues until a local maximum of the function

taken into account. The rules which do not appear in one ¢t€ing optimized is achieved.

the best derllvathns take null pro.b.ablllty and are not cons@erephere exists an efficient algorithm to compute kabest deriva-
for the next iteration. The probability mass is concentrated in th,

best derivations in very few iterations and therefore the algorithrgzgsti?;:(f;:%n?etﬁsig ggtgir?{r?jggztzrgg\;zti%?g?asgp eme [6].
converges rapidly [10]. piexity ring

O(|z||P]). The time complexity to obtain each new derivation

The 10 algorithm proceeds essentially in a similar way to the V4§ in Practiceapproximatelyproportional to the number of rules

algorithm, but the 10 algorithm takes into account all possibl@f the prévious derivation times a logarithmic factor [6].

ertators 0 eamig s, 1131 997 1L 428 sy e camplesy o e poposed esnation o
. ! . rithm, we suppose that the SCFG is in Chomsky Normal Form.

practical cases due to underflow problems). As in the VS algo-

rithm, the probability mass tends to be concentrated in very few lwe abuse the notation and consider this union operation to be a union

derivations but is slower than in the VS algorithm. between multisets which maintains the result as a multiset.




The set ofk-best derivations for small values bfis calculated firstiteration. When learning from thebest derivations, the be-
for each stringe in the sample with a time complexity @fp-  haviour was an intermediate behaviour between the 10 and VS
proximatelyO(|z|®|P|) [6]. Therefore the time complexity of algorithms. More information was used than in the VS algorithm
the algorithm per iteration i©(|Q2|n®| P|), wheren is the size and, therefore, the convergence took more iterations. However
of the longest string in the sample. much less information was used than in the 1O algorithm and,
therefore, the convergence was quicker. All of the algorithms
This estimation algorithm coincides with the 10 algorithm Whe”proceeded in a similar way, concentrating the probability mass

the number of derivations is the maximum for every string, and igf each string in a small set of derivations (see Table 1).
coincides with the VS algorithm when the number of derivations

is the best one of all the derivations.

[ algorithm | iteration O [ iteration 20 [ convergence |

VS 0.0000045] 0.0279 (100%) | 0.0279 (100%)

4. EXPERIMENTAL WORK F=3 | (0.5%) | 0.1509 (100%) | 0.1710 (100%)

N _ ) k=5 0.1759 (100%) | 0.2732 (100%)

We empirically show the behaviour of the proposed algorithm, [z =7 0.1870 (100%) | 0.2016 (100%)
for both its convergence as well as the goodness of the estimated 10 0.1328 (24.0%)| 0.4792 (59.8%)

models. Firstly, we tried to compare the proposed algorithm with
the 10 and VS algorithms. Given the characteristics of the 10 o _ _
algorithm, a synthetic experiment was carried out. Next, result8ble 1: Accumulated probability mass in the sample without

with a pseudo-natural task are presented. Finally, preliminargonsidering repeated strings with the initial grammar, after itera-
results with a real task are also reported. tion 20 and after convergence. In parenthesis, the percentage of

accumulated probability mass in the ten best derivations.
For the synthetic experiment, the arithmetic expressions lan-

guage with 5 terminal symbols was used. A training corpus ofnother important aspect to note is the maxima achieved, or in
5,000 strings was used. Moreover, an initial grammar with thgther words, the goodness of the obtained model. Every algo-
maximum number of rules which can be created with 5 terminajthm improves its own function iteratively, and therefore, the
symbols and 11 non-terminal symbols was constructed. The injkelihood of the sample was computed to be able to compare the
tial probabilities were randomly generated with severals seedgptained models. This is the function that is maximized by the 10
This initial grammar was estimated using the 10 algorithm, thgorithm and it is very interesting because it is directly related

VS algorithm and the proposed algorithm for different values ofg theperplexityof a sample. The results can be seen in Table 2.
k. After each iteration, the log of the function being maximized

by each one was computed and the results can be seen in Fig- VS 785.400.16 65.35%
ure 1. k=3 | -84,939.18] 0.54% | 64.48%
k=5 | -79,974.33| 6.35% | 54.84%
k=17 | -73,854.73| 13.52% | 43.00%
60,000 | /7”/,,»/"""”7 , 10 -51,648.20| 39.52%
’ 10
Table 2: The second column represents the log of the likelihood
80,000 | k=17 | of the sample. The third column represents the improvement of
’ T the log of the likelihood with respect to the VS algorithm. The
T =3 fourth column represents the loss of the log of the likelihood with

respect to the 10 algorithm.
-100,000

We can observe that the likelihood improved in absolute terms
as we used more derivations in the estimation process. The im-
‘ ‘ ‘ ‘ provement of the likelihood in relative terms between the VS
0 20 40 60 80 algorithm and the 10 algorithm was about 39.52% and 13.52%
Iteration was obtained using only seven derivations. The likelihood de-
creased approximately 43% if seven derivations were used, but it
decreased approximately 65% if only one derivations is used. It
Figure 1: Evolution of thelog of the function that is being max- s important to observe that we used small valuek, @nd larger
imized by each algorithm (VS; = 3, 5, 7 and |0). values could lead to better results.

In the second experiment, the proposed algorithm has been
An important aspect to note in this figure is the number of iterproven with an extension of a pseudo-natural task proposed in
ations which were needed to converge depending on the numiét. The original task consisted of descriptions of simple two-
of derivations used. The 10 algorithm took more iterations thadimensional visual scenes involving a few geometric objects with
the other ones. When the VS algorithm was uded=( 1), the different shapes, shades and sizes, and located in different rela-
convergence was very rapid because it only took into accoutive positions. The size of the vocabulary was 19 terminal sym-
the best derivation and a lot of information was ignored from théols and they were grouped into 9 grammatical categories. This



modification maintains most of the structural information con- 5. CONCLUSIONS

tained in the sample.
An iterative algorithm for estimating the probabilities of a

In the experiment, 20,000 strings were used for training (2,738tochastic Context-Free Grammar using Ehbest derivations
different strings) and 10,000 for testing (1,723 different strihgs) has been proposed. The time complexity per iteration of the algo-
An initial grammar with with the maximum number of rules rithm is practically the same as that of the VS and 10 algorithms.
which can be created with 9 terminal symbols and 19 nonin general, the models obtained by this algorithm improve the
terminal symbols was constructed and the initial probabilities ofmodels obtained by the VS algorithm for small valueg of

the rules were randomly generated. This initial grammar was es-

timated using the proposed algorithm with different number ofor future research, we propose the application of this method to
derivations and the final model was tested using the test set. TRgtimate SCFGs in other real tasks.

results obtained can be seen in Table 3. We can observe that the

log of the likelihood tended to increase as more derivations were 6. ACKNOWLEDGEMENTS
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