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ABSTRACT

The use of the Inside-Outside (IO) algorithm for the estimation
of the probability distributions of Stochastic Context-Free Gram-
mars (SCFGs) in Natural-Language processing is restricted due
to the time complexity per iteration and the large number of itera-
tions that it needs to converge. Alternatively, an algorithm based
on the Viterbi score (VS) is used. This VS algorithm converges
more rapidly, but obtains less competitive models. We describe
here a new algorithm that only considers thek-best derivations
in the estimation process. The experimental results show that
this algorithm achieves faster convergence than the IO and better
models than the VS algorithm.

1. INTRODUCTION

Stochastic Context-Free Grammars (SCFGs) are an appealing al-
ternative for Language Modeling in real tasks of Syntactic Pat-
tern Recognition [7] and Natural Language Processing [3]. The
reason for this can be found in the capability of SCFGs to express
long-distance dependencies and to be potentially more compact
than the n-gram models. However, the learning of SCFGs is still
an important obstacle for their application to language model-
ing. The most widely-used method for learning SCFGs is based
on the well-known Inside-Outside (IO) algorithm [2]. Unfortu-
nately, the application of this algorithm presents important prob-
lems which are accentuated in real tasks: the time complexity per
iteration and the large number of iterations that are necessary to
converge.

An alternative to the IO algorithm is an estimation algorithm
based on the Viterbi score (VS algorithm) [2]. The convergence
of the VS algorithm is faster than the IO algorithm, since the VS
algorithm only considers the information obtained from the best
derivation. However, the obtained SCFGs are, in general, worse
learned.

In the same way, another alternative is to consider a modification
of the IO algorithm which learns SCFGs from partially bracketed
corpora [8]. This algorithm only considers the possible deriva-
tions according to partial parses defined on the bracketed corpus.
The results reported in [8] show that the convergence of this algo-
rithm is significantly faster than the IO algorithm. The drawback
of this proposal is the need for large corpora which are manually
parsed and bracketed.

Here we describe a new algorithm for the estimation of the prob-
ability distributions of SCFGs from thek-best derivations. This
algorithm considers more information than the VS algorithm,
and therefore the SCFGs are, in general, better estimated. It is
not necessary to incorporate deductive information to the sam-
ple, in contrast to [8]. The number of iterations increases as the
value ofk grows up.

In the following section, some problems which are related to the
IO and VS algorithms are presented together with the notation
used. Next, the new estimation algorithm of SCFGs from thek-
best derivations is proposed. Finally, the experiments illustrating
the behaviour of this algorithm are reported.

2. NOTATION AND DEFINITIONS

A Context-Free Grammar(CFG)G is a four-tuple(N;�; P; S),
whereN is a finite set of non-terminal symbols,� is a finite set
of terminal symbols(N \� = ;), P is a finite set of rules of the
form A ! � (A 2 N and� 2 (N [ �)+) (we only consider
grammars with no empty rules) andS is the initial symbol(S 2
N). A CFG in Chomsky Normal Form is a CFG in which the
rules are of the formA ! BC or A ! a (A;B;C 2 N and
a 2 �). A left-derivationof x 2 �+ in G, is a sequence of
rulesdx = (p1; p2 : : : ; pm), m � 1 such that:(S

p1) �1
p2)

�2 : : :
pm
) x), where�i 2 (N [ �)+, 1 � i � m � 1, and

pi rewrites the left-most non-terminal of�i�1. The language

generatedbyG is defined asL(G) = fx 2 �+ j S
+
) xg.

A Stochastic Context-Free Grammar(SCFG)Gs is defined as
a pair (G; q) whereG is a CFG andq : P !]0; 1] is a
probability function of rule application such that8A 2 N :P

�2(N[�)+ q(A! �) = 1: Letdx be a left-derivation (deriva-
tion from now on) of the stringx, the expressionN(A !
�; dx) represents the number of times that the ruleA ! �

has been used in the derivationdx andN(A; dx) is the num-
ber of times that the non-terminalA has been derived indx.
We define theprobability of the derivationdx of the stringx
as: Pr(x; dx j Gs) =

Q
(A!�)2P q(A ! �)N(A!�;dx):

Let �x be a finite set of different derivations of the string
x. We define theprobability of the stringx with respect to
�x as: Pr(x;�x j Gs) =

P
dx2�x

Pr(x; dx j Gs):

When �x is the set of all possible derivations then we have
the probability of the stringx and is noted as:Pr(x j Gs) =P

8dx
Pr(x; dx j Gs): We define theprobability of the best



derivation of the stringx from a set of derivations�x as:
cPr(x;�x j Gs) = maxdx2�x Pr(x; dx j Gs); and we de-
fine thebest derivation, bdx, as the argument which maximizes
this function. Thelanguage generatedby Gs is defined as
L(Gs) = fx 2 L(G)jPr(x j Gs) > 0g.

Given an initial SCFGGs and a training sample
, the probabil-
ities can be modified to obtain a new SCFGG

0

s = (G; q0) using
the following expression(8(A! �) 2 P ):

q0(A! �) =

P
x2


1
Pr(xjGs)

P
8dx

N(A! �; dx) Pr(x; dx j Gs)
P

x2

1

Pr(xjGs)

P
8dx

N(A; dx)Pr(x; dx j Gs)
: (1)

This transformation attempts to improve the function
Pr(
 j Gs) =

Q
x2
 Pr(x j Gs) guaranteeing that

Pr(
 j G
0

s) � Pr(
 j Gs) [1].

In a similar way the probabilities can be modified with the ex-
pression(8(A! �) 2 P ):

q
0(A! �) =

P
x2
N(A! �; bdx)
P

x2
N(A;
bdx)

: (2)

where bdx is obtained by maximizing on all possible deriva-
tions of x. This transformation attempts to improve the func-
tionPr(
; bd
 j Gs) =

Q
x2


cPr(x; bdx j Gs) guaranteeing that

Pr(
; bd
 j G
0

s) � Pr(
; bd
 j Gs). The estimated models are
consistent, such as is demonstrated in [9].

The well-known IO algorithm consists on applying transforma-
tion (1) iteratively on an initial SCFGGs until a local maxi-
mum of the function being maximized is achieved. Likewise,
the VS algorithm consists in applying transformation (2) itera-
tively until a local maximum of the function being maximized
is achieved. Both algorithms are habitually formulated in a dif-
ferent way to work with SCFGs in Chomsky Normal Form and
they can be effectively computed using a Dynamic Programming
scheme. These algorithms have a time complexityO(j
jn3jP j)
in each iteration, wheren is the length of the longest string in the
sample.

In the estimation process, the VS algorithm considers only the
derivation with largest probability. Only the structural informa-
tion contained in the best derivations of the training sample is
taken into account. The rules which do not appear in one of
the best derivations take null probability and are not considered
for the next iteration. The probability mass is concentrated in the
best derivations in very few iterations and therefore the algorithm
converges rapidly [10].

The IO algorithm proceeds essentially in a similar way to the VS
algorithm, but the IO algorithm takes into account all possible
derivations in the learning process. If a rule appears in at least
one non-null derivation, it never takes null probability (except in
practical cases due to underflow problems). As in the VS algo-
rithm, the probability mass tends to be concentrated in very few
derivations but is slower than in the VS algorithm.

This behaviour suggests that the most probable derivations
greatly determine the evolution of the IO algorithm. Under this
hypothesis, we propose an algorithm which only considers thek

derivations with the largest probability. Ignoring the information
contained in the rest of the derivations could lead to a quicker
convergence, in a way similar to the VS algorithm. However,
the algorithm we propose can improve the estimated models ob-
tained by the VS algorithm.

3. ESTIMATION FROM A SET OF
DERIVATIONS

Given an initial SCFGGs, a training sample
 and a finite set
1�
 =

S
x2
�x, the following function can be used to modify

the probabilities (8(A! �) 2 P ):

q0(A! �) =

P
x2


1
Pr(x;�xjGs)

P
dx2�x

N(A! �; dx)Pr(x; dx j Gs)
P

x2

1

Pr(x;�xjGs)

P
dx2�x

N(A; dx)Pr(x; dx j Gs)

(3)

This transformation attempts to improve the function
Pr(
;�
 j Gs) =

Q
x2
 Pr(x;�x j Gs) guaranteeing

that Pr(
;�
 j G
0

s) � Pr(
;�
 j Gs). It can be proven
that this transformation guarantees that the estimated models are
consistent [9].

It is important to note in this expression that the function be-
ing maximized changes depending on the number of derivations
which are used. It can be observed that transformation (3) be-
comes (1) when�x has the maximum number of derivations of
x, while (3) becomes (2) when�x has only the best derivation
over all possible derivations. It is important to point out that
no relation can be established between the function being maxi-
mized when a different number of derivations is used in the trans-
formation.

Based on transformation (3), an algorithm is proposed in which
thek-best derivations is computed in each iteration following the
strategy of the VS algorithm. This algorithm starts with an initial
grammar and then an iterative process begins. In each iteration,
thek-best derivations of each string in the sample are obtained.
The counts of the numerator and denominator of (3) are accumu-
lated for those rules appearing in these derivations. At the end
of the iteration, transformation (3) is applied for each rule. This
iterative process continues until a local maximum of the function
being optimized is achieved.

There exists an efficient algorithm to compute thek-best deriva-
tions of a string based on a Dynamic Programming scheme [6].
The time complexity to obtain the best derivation of a stringx is
O(jxj3jP j). The time complexity to obtain each new derivation
is in practiceapproximatelyproportional to the number of rules
of the previous derivation times a logarithmic factor [6].

To study the time complexity of the proposed estimation algo-
rithm, we suppose that the SCFG is in Chomsky Normal Form.

1We abuse the notation and consider this union operation to be a union
between multisets which maintains the result as a multiset.



The set ofk-best derivations for small values ofk is calculated
for each stringx in the sample with a time complexity ofap-
proximatelyO(jxj3jP j) [6]. Therefore the time complexity of
the algorithm per iteration isO(j
jn3 jP j), wheren is the size
of the longest string in the sample.

This estimation algorithm coincides with the IO algorithm when
the number of derivations is the maximum for every string, and it
coincides with the VS algorithm when the number of derivations
is the best one of all the derivations.

4. EXPERIMENTAL WORK

We empirically show the behaviour of the proposed algorithm,
for both its convergence as well as the goodness of the estimated
models. Firstly, we tried to compare the proposed algorithm with
the IO and VS algorithms. Given the characteristics of the IO
algorithm, a synthetic experiment was carried out. Next, results
with a pseudo-natural task are presented. Finally, preliminary
results with a real task are also reported.

For the synthetic experiment, the arithmetic expressions lan-
guage with 5 terminal symbols was used. A training corpus of
5,000 strings was used. Moreover, an initial grammar with the
maximum number of rules which can be created with 5 terminal
symbols and 11 non-terminal symbols was constructed. The ini-
tial probabilities were randomly generated with severals seeds.
This initial grammar was estimated using the IO algorithm, the
VS algorithm and the proposed algorithm for different values of
k. After each iteration, the log of the function being maximized
by each one was computed and the results can be seen in Fig-
ure 1.
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Figure 1: Evolution of thelog of the function that is being max-
imized by each algorithm (VS,k = 3; 5; 7 and IO).

An important aspect to note in this figure is the number of iter-
ations which were needed to converge depending on the number
of derivations used. The IO algorithm took more iterations than
the other ones. When the VS algorithm was used (k = 1), the
convergence was very rapid because it only took into account
the best derivation and a lot of information was ignored from the

first iteration. When learning from thek-best derivations, the be-
haviour was an intermediate behaviour between the IO and VS
algorithms. More information was used than in the VS algorithm
and, therefore, the convergence took more iterations. However
much less information was used than in the IO algorithm and,
therefore, the convergence was quicker. All of the algorithms
proceeded in a similar way, concentrating the probability mass
of each string in a small set of derivations (see Table 1).

algorithm iteration 0 iteration 20 convergence

VS 0.0000045 0.0279 (100%) 0.0279 (100%)
k = 3 (0.5%) 0.1509 (100%) 0.1710 (100%)
k = 5 0.1759 (100%) 0.2732 (100%)
k = 7 0.1870 (100%) 0.2016 (100%)
IO 0.1328 (24.0%) 0.4792 (59.8%)

Table 1: Accumulated probability mass in the sample without
considering repeated strings with the initial grammar, after itera-
tion 20 and after convergence. In parenthesis, the percentage of
accumulated probability mass in the ten best derivations.

Another important aspect to note is the maxima achieved, or in
other words, the goodness of the obtained model. Every algo-
rithm improves its own function iteratively, and therefore, the
likelihood of the sample was computed to be able to compare the
obtained models. This is the function that is maximized by the IO
algorithm and it is very interesting because it is directly related
to theperplexityof a sample. The results can be seen in Table 2.

VS -85,400.16 65.35%
k = 3 -84,939.18 0.54% 64.48%
k = 5 -79,974.33 6.35% 54.84%
k = 7 -73,854.73 13.52% 43.00%
IO -51,648.20 39.52%

Table 2: The second column represents the log of the likelihood
of the sample. The third column represents the improvement of
the log of the likelihood with respect to the VS algorithm. The
fourth column represents the loss of the log of the likelihood with
respect to the IO algorithm.

We can observe that the likelihood improved in absolute terms
as we used more derivations in the estimation process. The im-
provement of the likelihood in relative terms between the VS
algorithm and the IO algorithm was about 39.52% and 13.52%
was obtained using only seven derivations. The likelihood de-
creased approximately 43% if seven derivations were used, but it
decreased approximately 65% if only one derivations is used. It
is important to observe that we used small values ofk, and larger
values could lead to better results.

In the second experiment, the proposed algorithm has been
proven with an extension of a pseudo-natural task proposed in
[4]. The original task consisted of descriptions of simple two-
dimensional visual scenes involving a few geometric objects with
different shapes, shades and sizes, and located in different rela-
tive positions. The size of the vocabulary was 19 terminal sym-
bols and they were grouped into 9 grammatical categories. This



modification maintains most of the structural information con-
tained in the sample.

In the experiment, 20,000 strings were used for training (2,730
different strings) and 10,000 for testing (1,723 different strings)2.
An initial grammar with with the maximum number of rules
which can be created with 9 terminal symbols and 19 non-
terminal symbols was constructed and the initial probabilities of
the rules were randomly generated. This initial grammar was es-
timated using the proposed algorithm with different number of
derivations and the final model was tested using the test set. The
results obtained can be seen in Table 3. We can observe that the
log of the likelihood tended to increase as more derivations were
used in the training process, as happened in the previous task.

algorithm log ts. lh. % impr. PP.

VS -221499.3 4.22
k = 3 -210422.7 5.00% 3.93
k = 5 -206610.2 6.72% 3.83
k = 7 -203826.4 7.98% 3.76

Table 3: Results of the final models for the test set. The first
column corresponds to the number of derivations used for train-
ing. The second column (log ts. lh.) corresponds to the log of
the likelihood of the test set. The third column corresponds to
the percentage of improvement with respect to the first row. The
fourth column presents the perplexity of the test set per word.

Finally, the proposed algorithm has been also proven with a part
of the Wall Street Journal task processed in the Penn Treebank
project [5]. The tagged part of the corpus was selected for the
experiment. The text was divided into sentences. A sentence was
considered a sequence of terminal symbols which finished when
the terminal symbol “.” was found, when a line of =’s was found
or when the end of the file was found. In order to reduce the
computational effort, only those sentences with length less than
the average length (24 terminal symbols) were considered for
training and test. Sections 00-19 (24,124 sentences) were used
for training and sections 20-24 were considered for test (6,444
sentences).

An initial grammar with the maximum number of rules which
can be created with 45 terminal symbols (the number of tags
defined in [5]3) and 14 non-terminal symbols (the number of
symbols used to parse the corpus [5]) was constructed. The ini-
tial probabilities were randomly generated. This initial grammar
was estimated using the proposed algorithm with different num-
ber of derivations and the final model was tested using the test
set.

The perplexity of the test set for the VS algorithm was 24.22 and
this value was 22.73 for the proposed algorithm withk = 3,
which means an improvement of 6.15%. More experiments are
being carrying out for other values ofk.

2A slightly modified version of the grammar proposed in [4] was used
to generate these strings. The modified grammar generates an infinite
language.

3There are 48 tags defined in [5], but three of them did not appear in
the corpus.

5. CONCLUSIONS

An iterative algorithm for estimating the probabilities of a
Stochastic Context-Free Grammar using thek-best derivations
has been proposed. The time complexity per iteration of the algo-
rithm is practically the same as that of the VS and IO algorithms.
In general, the models obtained by this algorithm improve the
models obtained by the VS algorithm for small values ofk.

For future research, we propose the application of this method to
estimate SCFGs in other real tasks.
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