
THE BBN SINGLE-PHONETIC-TREE FAST-MATCH

ALGORITHM

Long Nguyen and Richard Schwartz

BBN Technologies, GTE Internetworking

Cambridge, MA 02138, USA

ln@bbn.com

ABSTRACT

In this paper we present a very fast and accurate fast-match

algorithm which, when followed by a regular beam search re-

stricted within only the subset of words selected by the fast-

match, can speed up the recognition process by at least two

orders of magnitude in comparison to a typical single-pass

speech recognizer utilizing the Viterbi (or Beam) search algo-

rithm. This is a novel fast-match algorithm that has two im-

portant properties: high-accuracy recognition and run-time

proportional to only the cube root of the vocabulary size.

1. INTRODUCTION

In January 1993, at a DARPA workshop held at MIT, BBN

demonstrated for the �rst time ever a real-time, 20K-word,

speaker-independent, continuous speech recognition system,

implemented in software on an o�-the-shelf workstation. One

part of the algorithm was published soon thereafter [1]. How-

ever, the fast-match part of the algorithm, which has recently

received a US patent [2], has not been described until now.

While a number of fast-match algorithms have been pub-

lished, the BBN algorithm continues to have novel features

that have not appeared in the literature. The fast-match al-

gorithm has two important properties: high-accuracy recog-

nition and run-time proportional to only the cube root of the

vocabulary size.

In this algorithm, the vocabulary is organized as a phonetic

tree similar to Ney's [3]. However, in contrast to prior ap-

proaches in which several copies of the trees are needed in

order to use a word bigram language model, the innovation

in this algorithm allows us to use a word bigram language

model with just a single phonetic tree. In the remainder of

the paper, we will present in detail how we construct such a

phonetic tree and how to estimate the acoustic and language

models. Then we will explain the search algorithm and re-

port our �nding about the computational requirements.

2. PHONETIC TREE

Assume a vocabulary that consists of the following three

words, `abc', `abcd', and `ade' whose phonetic pronunciations

~
&[a]b,d

�
��7

S
SSw

~
a[b]c

~
a[d]e

�
��7

S
SSw

~
b[c]&

~
b[c]d

S
SSw

~
d[e]&

S
SSw

~
c[d]&

Figure 1: The phonetic tree for a hypothetical lexicon of

three words `abc', `abcd', and `ade'.

are a-b-c, a-b-c-d, and a-d-e respectively. The phonetic

tree for this vocabulary can be constructed as illustrated in

Figure 1. The annotations next to the nodes are the compos-

ite triphones of the phonemes associated with the nodes. For

example, &[a]b,d denotes a composite triphone for phoneme

`a' whose left context is the boundary with the special sym-

bol `&', and right context is phonemes `b' or `d'. That is,

the special triphone &[a]b,d is a composition of two nor-

mal triphones &[a]b and &[a]d. All other nodes can be

intepreted in the same manner; for example, b[c]d is a com-

posite triphone for phoneme c whose left context is phoneme

b and right context d.

There are probably some unique characteristics of this type

of phonetic tree in comparison to other types of lexical trees

studied before, such as that of Ney's [3]. First, the phonemes

are associated with the nodes rather than the arcs of the tree.

Second, the last phoneme node of each word is kept unique,

even if the word is a substring of another word. Third, each

node in the tree is associated with a set id representing the

set of words which share this node. The last two character-

istics of this type of phonetic tree make it possible to use a

word bigram language model during the search without tree

copying.



3. ACOUSTIC MODELS

With the phonetic tree constructed as in Figure 1 where each

node represents a (possibly shared) triphone, the acoustic

model for the composite triphone associated with that node

can be approximated as a weighted average of the corre-

spondent normal triphones. For a Tied Mixture (TM) or

Phonetically-Tied Mixture (PTM) or State-Clustered Tied-

Mixture (STM) model [4], the correspondent normal tri-

phones share the same codebook (i.e. a Gaussian mixture)

whereas their mixture weights are separate. Then the com-

posite triphone would use that same codebook and its mix-

ture weights are the weighted average of the mixture weights

of the correspondent normal triphones. For example, the

mixture weight v
&[a]b;d
j for component j of the Gaussian

mixture for composite triphone &[a]b,d is calculated as:

v
&[a]b;d

j =
v
&[a]b

j � c&[a]b + v
&[a]d

j � c&[a]d

c&[a]b + c&[a]d

where vxj stands for the mixture weight for component j of

the normal triphone x and cx stands for the EM (training)

count of the normal triphone x.

4. LANGUAGE MODELS

In the same manner as done for the acoustic models, we can

approximate a bigram language model for these nodes as

well. In contrast to previous approaches where the language

bigram probability is applied either at the �rst phoneme or

the last phoneme node with some form of tree copying, our

algorithm allows us to apply the language probability cu-

mulatively over all composite triphone nodes of the words in

the single tree. Assume the same phonetic tree as in Fig-

ure 1, and some word w has just ended, we want to apply

the probability of going into node &[a]b,d. Since all three

words, `abc', `abcd', and `ade', share this node, the probabil-

ity of going into node &[a]b,d given the preceding word w

would be

Pr(&[a]b;djw) = Pr(abcjw) + Pr(abcdjw) + Pr(adejw):

Similarly,

Pr(a[b]cjw) = Pr(abcjw) + Pr(abcdjw);

P r(b[c]&jw) = Pr(abcjw);

P r(b[c]djw) = Pr(c[d]&jw) = Pr(abcdjw);

and

Pr(a[d]ejw) = Pr(d[e]&jw) = Pr(adejw):

We call this language model a composite set bigram model

since it is the collection of the conditional probability of a set

of words that share a composite triphone given a preceding

word. Note that, since the last phonemes of the words are

not shared, the sets associated with the leaves are singletons

(i.e. sets which consist of a single member). Consequently,

the conditional probability of the set at the last phoneme of

a word given a preceding word is just the usual word bigram

probability.

The lower-order composite set ngrams (i.e. the set unigrams)

can alse be approximated in the same manner.

To say it another way, the composite set bigram language

model used in this fast-match is a di�erent representation of

the usual word bigram language model with some additions.

First, the usual Pr(wijwj) now becomes Pr(fwigjwj), where

fwig is the singleton set that consists of only wi. Pr(wi)

becomes Pr(fwig). For some set si which includes more

than one member, Pr(sijwj) =
P

8wk2si
Pr(wkjwj). And

Pr(si) =
P

8wk2si
Pr(wk).

5. THE SEARCH ALGORITHM

The search algorithm is similar to the time-synchronous

beam search [5] with a small addition to use the compos-

ite set bigrams. Again, assume the same phonetic tree as

before, at some time t, some k words end. Let �t
i be the

partial path score from the beginning of the sentence up to

word wi at time t, node &[a]b,d will be activated with the

product score

s = arg max1�i�kf�
t
i � Pr(&[a]b;djwi)g: (1)

That is, we search over the k ending words for the best word

to go into node &[a]b,d. The value of s and the time t are

then associated and carried along with node &[a]b,d during

its duration. At some t1 frames later, with an exit score s0,

&[a]b,d will activate a[b]c and a[d]e with the products

u = arg max1�i�kf�
t
i � Pr(a[b]cjwi)g �

s0

s

and

v = arg max1�i�kf�
t
i � Pr(a[d]ejwi)g �

s0

s

respectively. Note that, we still search over the same k

ending words at time t. Both a[b]c and a[d]e carry along

with them the time t, and the values u and v respectively.

Note that the division s0=s in e�ect takes out the temporary

composite set bigram Pr(&[a]b;djwi) used in the preceding

node. This is the case since s0 is the product of s and the

acoustic score for node &[a]b,d from time t to time t+ t1.

Then after some t2 frames later, assume that node a[b]c ends

with an exit score u0. In turn, a[b]c will activate b[c]& and

b[c]d with the products

p = arg max1�i�kf�
t
i � Pr(b[c]&jwi)g �

u0

u

and

q = arg max1�i�kf�
t
i � Pr(b[c]djwi)g �

u0

u

respectively.

Recall that by the design of the phonetic tree, the com-

posite set associated with the node representing the last



phoneme of the word is a singleton set. So, for node b[c]&,

Pr(b[c]&jwi) = Pr(fabcgjwi) = Pr(abcjwi). Consequently,

the search algorithm really uses a true word bigram lan-

guage model when it reaches the last phoneme of the word.

All other set bigrams used for the interior nodes could be

considered as partial or temporary language model scores.

The gradual amortization of the language model score makes

pruning much more e�cient and robust.

Eventually, node b[c]& will end, say at t3 frames later, and

the search will cycle back to the propagation mentioned in

Equation 1 for the root node of the phonetic tree with a

new value s
t+t1+t2+t3
abc . As re
ected in Equation 1, the word

bigram Pr(b[c]&jwi) is not taken out (as those composite

set bigrams at the interior nodes are, through the division

s0=s and u0=u, etc...).

In general, the propagation of theories on this phonetic tree

is quite similar to that of a beam search on a linear lexicon,

except for the addition of the adjustment of the composite

set bigrams when approaching a phoneme node: To activate

a node, we temporarily use some composite bigram proba-

bility; to leave that node, we remove that temporary bigram

probability. The closer the search approaches the end of the

word, it uses a more complete bigram probability.

5.1. Normalized Forward-Backward

As described in [6], the only goal of this fast-match is to keep

the likely word endings and their partial scores to guide the

second pass. This can be simply done by maintaining a list

of words ending at each frame and their partial scores. At

each time frame, we record the score of the �nal state of each

word ending. Let 
t be the set of words ending at time t,

and �t
wi

be the partial path score up to word wi at time t.

Each �t
wi

represents the probability of the speech from the

beginning of the utterance up to time t given the most likely

word sequence ending with word wi times the probability of

the language model for that word sequence.

As described in [7] and [8], the second backward pass is essen-

tially the time-synchronous beam search. When some word

w ends at some time t with a partial score �t
w (� is similar to

� in the forward pass but from the end of the utterance up

to w), instead of activating the whole lexicon as in the linear

lexicon beam search, we only activate those words wi 2 
t�1

if they satisfy the following condition:

�t�1
wi

max �t�1
�

�t
w

max �t
� Pr(wijw; wj) > 


where wj is the best `preceding' word of w, and 
 is the

forward-backward pruning threshold.

5.2. Admissibility

The fast-match algorithm is clearly not admissible in a strict

sense. However, although the best result from the fast-match

is not as accurate as the full search, we �nd in very large

studies that it never causes increased error for the second

pass.

5.3. E�ciency Issues

It is possible to make the fast-match run as fast as possible

provided that it can save su�ciently good words ending at

each frame for the second pass. We typically save about

100 words. The �rst thing that can speed up the search is

to minimize k in Equation 1 (This also helps all the other

arg max1�i�k�
t
i::: evaluation as well). Right after saving

these k words to guide the second pass later, this list can be

truncated to leave only a few high-score words. Empirically,

we observed that for a 20000-word demo system, k can be 4

or 5.

Another part of the computation that takes a long time is the

access to the bigram probabilities, since these are normally

stored in a compact representation. To avoid this, we estab-

lish a bigram cache for a few active states (ending words).

For each of these states, we have a random access array of

all of the bigram probabilities.

We can also save computation by not evaluating

arg max1�i�kf�
t
i�Pr(a new destination nodejwi)g when the

set id of the new destination node is the same as that of the

source node. Instead, we use the same result evaluated when

going into the source node before. This can be detected eas-

ily by checking if there is only one out arc from the source

node. This is true since, from the design of the phonetic tree,

if there is only one out arc at a node, the destination node

has the same set id as the source node.

6. COMPUTATION VERSUS

VOCABULARY SIZE

To learn how the computation of this search strategy (fast-

match followed by a trigram Forward-Backward beam search

[8]) grows with vocabulary size, we measured the computa-

tion required at three di�erent vocabulary sizes: 1500 words,

5000 words, and 20000 words. The time required, as a frac-

tion of real time, is shown plotted against the vocabulary

size in Figure 2. As can be seen, the computation increases

very slowly with increased vocabulary.

To understand the behavior better, we plotted the same

numbers on a log-log scale in Figure 3. Here we can see

that the three points fall neatly on a straight line, leading

us to the conclusion that the computation grows as a power

of the vocabulary size. Solving the equation gives us the

formula

time = 0:03V
1=3

where V is the vocabulary size.

This is very encouraging, since it means that if we can de-

crease the computation needed by a small factor, it would

be feasible to increase the vocabulary size by a larger factor,

making recognition with very large vocabularies possible.



0.15 0.5 2

x 10
4

0.3434

0.513

0.8143

Vocabulary

Ti
m

e 
(x

RT
)

Figure 2: Run time vs. vocabulary size, linear scale, mea-

sured on an HP735 with 400 Meg RAM in 1993

As a matter of fact, a year later in 1994, after some code

optimization, this search strategy could run in less-than real

time with a 40000 word vocabulary.

7. SUMMARY

We have described a novel fast-match algorithm based on a

single phonetic tree. There are some unique characteristics

in this proposed lexical tree which made it possible to use

a word bigram language model during the search without

tree copying. On this phonetic tree, all the last phonemes

of the words in the lexicon always locate at the leaves of the

tree. Each node of the tree is assigned a set id represent-

ing a group of words which share this node. The acoustic

phoneme models associated with the nodes are the composite

triphones where there could be more than one right context.

In comparison to the usual triphone models, there is only a

small di�erence for these composite triphones: the mixture

weights of the composite triphones are the weighted average

of the correspondent triphones. We also showed the trans-

formation of the usual word bigram language model into a

composite set bigram language model. With this compos-

ite set bigram language model, we could apply the language

probabilities in a cumulative fashion at every phoneme node

of the word without tree copying. The search itself is quite

similar to the usual time-synchronous beam search with one

addition: to activate a node, we temporarily use some com-

posite bigram probability; to leave that node, we take out

that temporary bigram probability. The fast-match can run

as fast as possible provided that it can save su�ciently good

words ending at each frame to guide the second pass. Finally,

we demonstrated that the computation required by this al-

gorithm grows as the cube root of the vocabulary size, which

means that real-time recognition with very large vocabular-

ies is feasible.

Acknowledgements

This work was supported in part by the Defense Advanced

Research Projects Agency and monitored by Ft. Huachuca

1500 5000 20000

0.3434

0.513

0.8143

Vocabulary

Ti
m

e 
(x

RT
)

Figure 3: Run time vs. vocabulary size, log-log scale, mea-

sured on an HP735 with 400 Meg RAM in 1993

under contract No. DABT63-94-C-0063. The views and �nd-

ings contained in this material are those of the authors and

do not necessarily re
ect the position or policy of the Gov-

ernment and no o�cial endorsement should be inferred.

8. REFERENCES

1. Nguyen, L., Schwartz, R., et al., \Search Algorithms for

Software-Only Real-time Recognition", Proc. of ARPA

Human Language Technology Workshop, Princeton, NJ,

Mar. 1993, Princeton, NJ., pp. 411-414.

2. Schwartz, R., Nguyen, L., \Single Tree Method for Gram-

mar Directed, Very Large Vocabulary Speech Recog-

nizer", US Patent 5621859, Apr. 1997.

3. Ney, H., Haeb-Umbach, R., Tran, B.-H., Oerder, M., \Im-

provements in Beam Search for 10000-Word Continuous

Speech Recognition", Proc. ICASSP '92, San Francisco,

CA., Mar. 1992, pp. I.9-12.

4. Nguyen, L., Anastasakos, T., Kubala, F., LaPre, C.,

Makhoul, J., Schwartz, R., Yuan, N., Zavaliagkos, G.,

Zhao, Y., \The 1994 BBN/BYBLOS Speech Recognition

System", Proc. of ARPA Spoken Language Systems Tech-

nology Workshop, Austin, TX, Jan. 1995, pp. 77-81.

5. Lowerre, B. T., \The Harpy Speech Recognition System",

PhD Thesis, Carnegie-Mellon University, 1976, Pitts-

burgh, PA.

6. Nguyen, L., Schwartz, R., \E�cient 2-Pass N-Best De-

coder", Proc. EuroSpeech '97, Rhodes, Greece, Sep. 1997,

pp. 167-170.

7. Austin, S., Schwartz, R., Placeway, P., \The Forward-

Backward Search Algorithm", Proc. of IEEE ICASSP-91,

Toronto, Canada, May 1991, pp. 697-700.

8. Schwartz, R., Nguyen, L., Makhoul, J., \Multiple-Pass

Search Strategy", Automatic Speech and Speaker Recog-

nition: Advanced Topics, Kluwer Academic Publishers,

Boston, 1996, pp.429-456.


