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ABSTRACT

Over frames of short time duration, filtered speech may be described as a finite linear combination of
sinusoidal components.  In the case of a frame of voiced speech the frequencies are considered to be
harmonics of a fundamental frequency.  It can be assumed further that the speech samples are
observed in additive white noise of zero mean, resulting in a standard signal-plus-noise model.  This
model has a nonlinear dependence on the frequencies of the sinusoids but is linear in their
coefficients.  We use subspace line spectral estimation methods of Pisarenko and Prony type to
estimate the frequencies and use the results in voiced-unvoiced classification and pitch estimation,
followed by analysis of the speech waveform into its sinusoidal components.

1. INTRODUCTION

In [5] McAulay and Quatieri proposed an analysis and synthesis framework based on a model that
describes speech, over frames of short time duration, as a finite combination of sinusoidal
components.  In terms of complex exponentials the model has the form
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where c-k = ck
*, ω−k = −ωk, ω0 = 0 and n = 0 … Ns−1.  In the case of a frame of voiced speech the

frequencies are considered to be harmonically related to a fundamental frequency ω, ωk = kω .  We will
assume that the speech samples in (1) are observed in additive white noise of mean zero and
variance σo

2, resulting in the  observed  process  xn = sn + wn,  n = 0 … Ns−1.  The model in (1) has a
nonlinear dependence on the frequencies but is linear in the coefficients.  In the next two sections we
briefly review subspace methods of the Pisarenko and Prony type for estimating the frequencies.  We
give experimental results in section 4 and in section 5 we discuss the use of these methods in
distinguishing between voiced/unvoiced (V/U) frames and in the estimation of pitch. Finally the
accuracy of the new pitch estimation algorithm and the suitability of the harmonic sinusoidal model for
voiced speech are tested using linear least squares.

2. PISARENKO TYPE SUBSPACE METHODS FOR FREQUENCY ESTIMATION

If we consider the magnitudes and phases of the complex coefficients in (1) to be a system of
independent random variables, with the phases uniformly distributed over (−π, π), then the coefficients
ck are orthogonal.  They can also assumed to be uncorrelated with the white noise process wn.  Under
these conditions the process {xn} is wide sense stationary and we form a vector from N consecutive
random  variables of  this  process, x = [x0 x1 … xN]T.  By defining the signal vectors sk = [1 exp(jωk)
exp(jωk2) … exp(jωk(N−1))]T, for k = −M … M, the vectors c = [cM … c0 … cM]  and    w  =  [w0  w1  …
wN]T,  and   the   matrix  S = [sM … s0 … s-M], we can write the observed sequence in matrix-vector
form as x = Sc + w.

The vectors sM , … , s0, … , s-M form a linearly independent set.  The 2M+1-dimensional subspace of
CN spanned by these vectors is called the signal subspace and its orthogonal complement is called the
noise subspace. The correlation matrix of the vector x has a full set of orthonormal eigenvectors e1,
e2, … , eN and a corresponding set of eigenvalues λ1 ≥ λ2 ≥ … ≥ λN. These eigenvectors and
eigenvalues have a special property: The eigenvectors e1, e2, … , e2M+1 span the signal subspace and
the corresponding eigenvalues are such that λ1 ≥ λ2 ≥ … ≥ λ2M+1 > σo

2. The remaining eigenvectors



e2M+2, e2M+3, … , eN span the noise subspace and their corresponding eigenvalues are all equal, λ2M+2 =
λ2M+3 = … = λN = σo

2 [9].

Pisarenko [6] was the first to exploit this structure of the eigenvectors of the correlation matrix in
estimating exponentials in noise.  A generalisation of  the Pisarenko method is the MUSIC procedure
(for Multiple Signal Classification) of  Schmidt [9].  In the special case of real sinusoids that we are
considering here, MUSIC assumes that the number of sinusoids M is known, or can be estimated, and
uses a correlation matrix of size N > 2M+1.  The signal vectors are orthogonal to the noise subspace
and hence the inner product of each of these signal vectors with each of the noise subspace
eigenvectors is zero.  This fact motivates the formation of a general frequency vector s = [1 exp(jω)
exp(jω2) … exp(jω(N−1))]T and the definition of the pseudo-spectrum function
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When ω = ωk, s = sk and the denominator in (2) is zero.  Thus a plot of SM(ejω) versus ω would
theoretically show infinite peaks at the frequencies ωk, −M ≤ k ≤ M.

The denominator in (2) can also be viewed as the evaluation on the unit circle of the polynomial
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-1 + … + ei(N-1)z
-(N-1), with eij the components of ei.  Each of

the polynomials Pi(z), and hence the polynomial PM(z), has a zero on the unit circle at z = ejω, ω = ωk,
−M ≤ k ≤ M.  The remaining roots that do not correspond to any signal frequency are called the
spurious roots.  The summation of the polynomials in PM(z) has the effect of  moving the spurious
roots away from the unit circle [9].

A further extension of the above is the minimum-norm method that was put forward by Kumaresan
and Tufts [3].  This technique does not directly use all of the vectors in the noise subspace.  Instead it
selects a single vector v in the noise subspace which has two properties:  the norm of v is minimum
and its first component is 1.  Since v still lies in the noise subspace it is orthogonal to the signal
vectors, sk

Hv = 0 for −M ≤ k ≤ M,  and is thus used to define the pseudo-spectrum
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If the noise subspace eigenvectors are organised into the matrix En = [e2M+2 e2M+3 … eN] then v is
given by the expression v = Enh/(hHh), where hH is the first row of the matrix En.  The components of
v, v0 = 1, v1, … , v(N−1), can be used to   form  a  polynomial,  PMN(z) = v0 +  v1z

-1  +  …  +  v(N-1)z
-(N-1),

that again has 2M+1 roots on the unit circle at frequencies ω = ωk, −M ≤ k ≤ M.  The two restrictions on
v force the spurious roots of PMN (z) to be strictly inside the unit circle [3].

3. PRONY TYPE SUBSPACE METHODS FOR FREQUENCY ESTIMATION

Methods of the Prony type use linear prediction in estimation of frequencies. Prony’s original method,
in the present case of real sinusoids, assumes that noise free observations xn are available for n = 0,
1, 2, … , 2(2M+1)−1 = 4M+1.  The signal frequencies can be located by finding the roots of the
polynomial Q(z) = 1 + q1z

-1 + … + q(2M+1)z
-(2M+1), whose coefficients can be obtained by solving a

system of linear equations obtained from the observations.  For more details see Scharf [8].

Kumaresan [4] showed that the condition on the number of observations in Prony’s method can be
relaxed.  Define qK = [qK0 qK1 … qKN]T, Q(z) = qK0 + qK1z

-1 + … + qKNz-N, and X to be the coefficient
matrix for the homogeneous form of the covariance equations of linear prediction.  If the vector qK

satisfies XqK = 0, with 2M+1 ≤ N ≤ Ns−(2M+1), then the polynomial QK(z) has 2M+1 of its zeros at ejω,
ω = ωk, −M ≤ k ≤ M.  In addition the N−(2M+1) spurious roots of the polynomial QK(z) are strictly inside
the unit circle if its vector of coefficients is chosen such that qK0 = 1 and its norm, |qK|, is minimum.



When the measurements are noisy, we can partition X = [b A] and qK = [1 q′K
T]T and write the

inconsistent system  XqK ≈ 0 as Aq ′K ≈ −b.  The matrices  X and A are generally full rank in the
presence of noise.  If the number of rows of A, Ns−N, is at least as great as the number of columns, N
(Ns ≥ 2N), then the inconsistent system of equations, Aq ′K ≈ −b, is over determined and it is possible
to obtain a least squares minimum norm solution for q′K using the pseudo-inverse of A.  Such a
procedure, however, gives poor frequency estimates.  With no  noise the rank of the matrices X and A
is 2M+1 [4].  In an effort to approach the noise free case, Tufts and Kumaresan [10] proposed the use
of a rank 2M+1 approximation to A and its pseudo-inverse.  Because of this low rank approximation
their technique has come to be known as the principle components method.  The solution for the
coefficient vector uses the singular value decomposition of the matrix A = UAΣAVA, and is given by
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The matrix
~Σ A

−1has the inverse of the largest 2M+1 singular values on its diagonal and zeros
elsewhere.  The matrix in brackets on the right hand side of equation (4) is the rank 2M+1 pseudo-
inverse of A.

It is possible to simultaneously take into account noise in both A and b by employing the method of
total least squares of Golub and Van Loan [2], first used for the problem of frequency estimation by
linear prediction by Rahman and Yu [7].The total least squares solution q′TLS is obtained via the
singular value decomposition of the data matrix X = UXΣXVX, where it is assumed that the number of
rows of X, Ns−N, is at least as great as the number of columns, N+1,  Ns  ≥ 2N+1.  Like the method of
principle components, we assume that the singular values σj, j = 2M+2, …, N+1, arise from noise and
are equal.  The portion, Vn,  of the matrix VX, corresponding to these singular values is partitioned as
Vn

T= [g* V′n
T].  The minimum norm total least squares solution is then given by
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This form of the solution and its equivalence to that obtained by the minimum-norm method was
indicated by Dowling and DeGroat [1].  The coefficient vectors qKT = [1 q′K

T]T and qTLS = [1 q′TLS
T]T can

be used, in the corresponding polynomials QKT(z) and QTLS(z), to define pseudo-spectra analogous to
those of section 3.

4. EXPERIMENTAL RESULTS

Figures 1 and 2 show, respectively, a frame of voiced speech and the corresponding pseudo-
spectrum obtained by the minimum-norm/total least squares method.  Figures 3 and 4 show the same
for a frame of unvoiced speech.

The use of the data matrix X of (4) in total least squares amounts to forming an unnormalised estimate
of the correlation matrix by the covariance method. The noise subspace eigenvectors are obtained by
singular value decomposition of X.  The resulting matrix V needs to be partitioned by estimating the
value of M.  In the case of figures 2 and 4 this was done by using forms  of the Akaike information
criterion and the minimum description length, developed for the case of sinusoids in noise by Wax and
Kailath [11].  A simple thresholding of the eigenvalues (singular values squared) can also be
employed.  Alternatively the dimension of the noise subspace can be fixed (at an under estimate)  to
accommodate the highest value of M that is likely to be encountered.  Doing so would result in a
further under estimate of the dimension of the noise subspace when the true value of M is smaller
than the maximum.  However, the results above would still apply since only fewer noise subspace
eigenvectors would be used.  The partitioning of the matrix of eigenvectors, regardless of the
technique used, implicitly equates the singular values corresponding to the noise subspace
eigenvectors.  In practice, to accommodate the conditions on Ns, N, and M given in sections 3 and 4,
and to keep the computation at a reasonable level, the methods can be employed on subbands.
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                Figure 1 : Voiced speech frame.       Figure 3 : Unvoiced speech frame.
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 Figure 2 : Pseudo-spectrum for frame of figure 1.    Figure 4 : Pseudo-spectrum for frame of figure 2.

5.  V/U CLASSIFICATION AND PITCH ESTIMATION

We need to ignore the small ripples in figures 2 and 4 that are due to spurious roots.  Examination of
the remaining prominent peaks then gives estimates of the frequencies present in the frame of speech
under analysis.  In voiced speech the frequencies can be modelled as multiples of a fundamental
frequency, whereas in unvoiced speech no such relationship can be expected to hold.  These
assumptions are validated by an examination of figures 2 and 4.  The pseudo-spectrum for the frame
of voiced speech shows the peak spacing to be quiet uniform.  On the other hand the pseudo-
spectrum for the unvoiced frame shows the peaks appearing quiet irregularly.  This difference can be
exploited in V/U classification.  A simple decision scheme can be based on the variance of the inter-
peak distance together with a threshold.  When the variance is small (0.2500 for figure 2) the frame
can be considered as voiced and when it is large (1.0612 for figure 4) the frame is declared to be
unvoiced.

For pitch frequency estimation the very first peak location can be used.  Improved estimates can be
obtained by using unweighted and weighted univariate least squares.  In these we consider the ith
prominent peak location, pi, to be the ith harmonic of the fundamental/pitch frequency κ, pi ≈ κi, and
minimise the sum of squared errors, or the sum of weighted square errors.  An appropriate set of
weights, δi for the ith peak, can be obtained from the magnitude of the discrete Fourier transform of
the frame of speech being analysed.  The assumption that the ith peak is the ith harmonic may not be
valid, due to the presence, just inside the unit circle, of spurious roots of the polynomial used in
computing the pseudo-spectrum.   To estimate pitch frequency, while taking into account the



possibility of missing peaks and nonideal  harmonics, we used the following iterative
weighted/unweighted least squares algorithm:
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where Mp is the total number of peaks and j represents iterations through the algorithm.  The final
estimate of κ is the value to which the sequence κj converges.  This convergence takes only a small
number of iterations in cases that were tested.  The weights δi can be set equal to 1 for the unweighted
case.  It frequently happens that the value M′p, to  which  mj

Mp  converges, is strictly greater than Mp,
M′p > Mp, implying that certain peaks were missing from the pseudo-spectrum.  For the case of the
voiced frame of figure 1, this algorithm gave the value 114.55Hz.  This is very close to estimates taken
directly from examination of the frame.

The accuracy of this estimate, and that of the harmonic sinusoidal model for the voiced frame of figure
1, can be evaluated using least squares.  Since the matrix S of section 1 is now known, standard least
squares was used to solve for c.  The reconstructed frame is shown in figure 5.  Its close resemblance
to the frame of figure 1 shows that the estimate and the model are very accurate.
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Figure 5 : Reconstructed frame corresponding to figure 1.

6. CONCLUSIONS

Subspace methods of frequency estimation are very high resolution spectral estimation techniques
that can be applied to speech in the context of the sinusoidal model.  Since the methods admit additive
noise, we showed that they provide a robust element for V/U classification.  In addition, the methods
lead to a reliable pitch estimation algorithm.
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