
CONCEPT-DRIVEN SPEECH UNDERSTANDING

INCORPORATED WITH A STATISTIC LANGUAGE MODEL

Akito Nagai Yasushi Ishikawa

Information Technology R&D Center, MITSUBISHI Electric Corporation
5-1-1 OFUNA, KAMAKURA, KANAGAWA 247, JAPAN

E-mail: fnagai, yasushig@media.isl.melco.co.jp

ABSTRACT

We have proposed a method of concept-driven

semantic interpretation based on general semantic

knowledge of conceptual dependency. In our ap-

proach, a concept is a unit of semantic interpretation

and an utterance is regarded as a sequence of con-

cepts that convey an intention. However, a consider-

able number of accepted results were not syntactically

meaningful. This is because the order in which lin-

guistic features occurred in the sequence of concepts

was not taken into account in constructing the whole

meaning from the concepts: only semantic constraint

was used to attain linguistic robustness. Therefore,

we introduce a statistical language model which cal-

culates the plausibility of a sequence of concepts from

the points of view of the order in which shallow lin-

guistic features occur. Experimental results of speech

understanding for 1000-word-vocabulary spontaneous

speech show that the proposed method signi�cantly

improves the system performance.

1. INTRODUCTION

It is essential that a spoken dialog system can un-

derstand spontaneous speech so that it can be used

easily by a naive user whose utterances comprise a

large variety of expressions, which are often ill-formed

[1, 2]. Thus, to improve speech recognition, such

a system must have both linguistic robustness and

adequate constraint. Our method for attaining lin-

guistic robustness involves exploiting semantic knowl-

edge so that it represents relations between phrases

by semantic-driven processing. We have proposed

a method of concept-driven semantic interpretation

based on general semantic knowledge of conceptual

dependency [3]. In our approach, a concept is a unit of

semantic interpretation and an utterance is regarded

as a sequence of concepts that convey an intention

(Figure 1).

The performance of this method, however, was not

adequate for practical use. A considerable number

of accepted results were not syntactically meaning-

ful, although they were semantically meaningful. This

was because the order in which linguistic features oc-

curred in the sequence of concepts was not taken into

account in constructing the whole meaning from con-

cepts. Only semantic constraint was used to attain

linguistic robustness.

Therefore, we introduce a statistical language model

which takes into account the occurrence order of lin-

guistic features without eliminating linguistic robust-

ness and generality. This model calculates the plau-

sibility of the sequence of concepts from the point of

view of shallow linguistic features. This paper dis-

cusses issues concerning the incorporation of the sta-

tistical language model of shallow linguistic features

into the framework of semantic-driven speech under-

standing. It also reports empirical evaluation of the

system's performance with spontaneous speech data

concerning a sightseeing task with a 1000-word vo-

cabulary.

<phrase lattice>

<meaning hypothesis>

<intention> HOW

semantic
interpretation

modality: permission
tense: present

<predicative concept>

modifier: adverbial case: place-from case: manner
<concept>

Daibutsu-ni
(to the Daibutsu)

eki-kara
(from a station)

dooyaQte
(how)

ikitaiNdesu-ga
(I’d like to go)

Hase-no
(of Hase)

ikeba-iiNdesuka
(can I get to)

(to the Daibutsu)

(I’d like to go)

(of Hase)

(from a station)
(how)

(can I get to)

<concept>
<concept>

Figure 1: Concept-driven semantic interpretation.



2. LINGUISTIC FEATURES TO BE

MODELED

When we express a meaning we have in our minds,

various expressions of it can be produced as utter-

ances. Among these utterances, there are some ex-

pressions which are rarely used, although they can be

interpreted as the same meaning. In Japanese, it is

considered that the order of phrases is basically free,

but, for example, a phrase which includes a particle

\wa" indicates the topic (topic case) and is often ut-

tered at the beginning of an utterance. Such a topic

case rarely occurs at the middle or at the end of an

utterance. Other linguistic features like cases, attribu-

tive/adverbial modi�ers and predicatives are also con-

sidered to occur according to basic principles of lin-

guistic constraint on their order.

We utilize these basic principles of linguistic fea-

tures as a constraint model in order to improve speech

understanding. Our model evaluates linguistic cost

according to, for example, whether a topic case is fol-

lowed by an object case and whether that is usual

or unusual in an utterance. Such a onstraint re-

quires both a score which represents the plausibil-

ity of a sequence of linguistic features, and the ac-

ceptance of various expressions of spontaneous speech

as knowledge sources. Therefore statistical approach

is desirable. Moreover, to make the method task-

independent, the units of constraint must be shal-

low linguistic features, rather than words which would

make the method dependent on training corpus.

<concept A> <concept B> <concept C>Hase-de

Daibutsu-wo

mitaiNdesu-ga moyorieki-wa dokodesu-ka
(in Hase)

(the Daibutsu)

(I want to see) (the nearest station) (where is)

attribute:

particle-category:

[adverbial clause]

<conjunctive> <wa> <ka>

[topical case] [query]

Figure 2: A sequence of particle-categories.

Therefore, we use attributes of the concept as the

unit of the statistical model. The attributes are shal-

low linguistic properties that are classi�ed, such as

cases and adverbial clauses, and have a dominant role

in constructing the global structure of an utterance.

The attributes are decided by morphological infor-

mation such as particles, parts of speech and con-

jugations. Attributes in Japanese are mainly repre-

sented by the particle-category, so we use the particle-

category of the concept as the unit of the model which

captures the sequence of the attributes approximately

(Figure 2). The particle-category is a classi�cation of

function words, auxiliary verbs, and conjugations. Ex-

amples of correspondence between the attributes and

the particle-categories are shown in Table 1.

Table 1: Examples of correspondence between the

attributes and the particle-categories (partly).

Attributes Particle-categories

topic case \wa, Qte"

agent case \ga"

object case \wo"

source case \kara"

goal case \made"

place case \ni, de"

conditional clause \ba", \nara, tara"(auxiliary)

query \ka"

3. STATISTIC LANGUAGE MODEL

We use N -gram (trigram) for modeling a sequence

of the particle-categories of a concept. This model

represents more global relations of linguistic features

than that of wordN -gram or phrase-based particleN -

gram [5] because the particle-category trigram here is

based on the concept which integrates phrases into a

semantic unit as a dominant element for determining

the meaning of an utterance.

During the training of the model, if a trigram prob-

ability is higher than a certain threshold, the trigram

is given a constant value. This is because we want

to extract trigram rules which have general plausi-

bility in spontaneous speech, and to handle such tri-

gram rules as they should have same probability. The

particle-trigram model based on concept is de�ned in

the following manner. Let C1; C2; : : : ; Cn; : : : ; CN be

a sequence of particle-categories in an utterance which

includes N concepts. The occurrence probability of a

particle-trigram P (CnjCn�2; Cn�1) is trained by the

formula;

P (Cn j Cn�2; Cn�1)

=

(
frequency(Cn�2; Cn�1; Cn)

frequency(Cn�2; Cn�1)
(< Pthreshold)

Const: (� Pthreshold)
(1)

where Pthreshold (0 < Pthreshold < 1) is the thresh-

old for extracting the trigram rule, and Const: is the

same probability which is given to all the trigram

rules. Then, if we let P (S) be the total occurrence

probability of a whole utterance, and C0, CN+1 be

categories which mean the beginning and the end of

the utterance, we have



P (S) = p(C1 j C0; C0)
n=N+1Y
n=2

P (Cn) (2)

This probability is used in the process of speech un-

derstanding as the logarithmic likelihood for linguistic

score Sngram by

Sngram = � log(P (S))

= � log(p(C1 j C0; C0))�
n=N+1X
n=2

log(P (Cn)) (3)

4. TRAINING THE MODEL

The method for training the particle-category tri-

gram and the text-based evaluation are described here.

4.1. Conditions

16 particle-categories are de�ned, including eleven

particle-categories for representing cases (\wa, Qte,

ga, wo, mo, ni, de, kara, made, e, ka"), three

for representing adverbial clauses (<conditional>,

<conjunctive-1>, <conjunctive-2>), one for repre-

senting the others (<else>) and one symbol (\-")

for the beginning/end of an utterance. The particle-

category trigram was trained with 1091 text data con-

cerning a sightseeing dialog. The texts were manually

segmented into units of a concept, then automatically

tagged with the 16 particle-categories. The threshold

for extracting the trigram rule is 0.05 to give the same

probability of 1.0.

Table 2: Results of training the model.

variety of trigrams 375 kinds

#training samples 3955 samples

#possible trigrams 4096 (163)

Table 3: Examples of trigram rules extracted from a

sequence of particle-categories (frequency).

<-/-/wa> (160), <wa/ka/-> (125), <-/-/de> (119),

<else/ka/-> (115), <wo/else/-> (98), <-/-/else> (92),

<-/-/conditional> (82), <else/else/-> (79), <-/-/Qte>

(55), <-/-/wo> (54), <ga/ka/-> (44), <-/wa/ka> (42),

<de/wo/else> (36), <wa/ni/ka> (22)

not found: <wa/made/mo>, <ga/ga/ka>,

<wo/made/wa>, <ni/kara/de>

4.2. Results

Table 2 shows the results of training the model.

The number of training samples was almost equal to

the number of possible trigrams, so we think that the

amount of training data is reasonable for extracting

plausible trigram rules. Plausible trigram rules which

occurred with high frequency and trigrams which were

not found are shown in Table 3. This suggests that

the model captured linguistic features of spoken dialog

fairly successfully. To evaluate linguistic constraints of

the model, linguistic scores for both the training cor-

pus and for texts of understanding errors were calcu-

lated by equation (3) (the lower the score, the better).

A score of 0.1-2.0 was given to the training corpus

and a score of 4.5-13.1 was given to the errors. These

results convinced us that reasonable constraints can

distinguish between plausible texts and errors.

5. SPEECH UNDERSTANDING

EXPERIMENTS

We have used this trigram model to carry out

speech-understanding experiments for 1000-word-

vocabulary spontaneous speech in human to machine

communication.

5.1. Conditions

162 speech data from six males were used for the

evaluation. These were collected in an o�ce environ-

ment with an experimental spoken dialog system that

was used for the sightseeing task. We told the subjects

to ask questions freely. These speech data did not in-

clude types of utterance that consist of only one con-

cept, for example, yes/no-responses or fragments like

\ashita-desu (tomorrow)". In the process of speech

recognition, phrase spotting used intra-phrase net-

works that had a vocabulary of 1005-word which in-

cluded 23 �lled-pauses. Speaker-independent syllable-

HMMs were used. In the semantic interpretation, 102

concepts and 13 types of conceptual dependency were

used. 40 linguistic penalty rules [4] for heuristic con-

straint were also used. The semantic interpretation

outputs the understanding results as N -best meaning

hypotheses.

A total score of each meaning hypothesis is calcu-

lated by combining three scores; acoustic likelihood

of phrase spotting (Sacoustic), penalty score (Spenalty)

and linguistic score of the particle-category trigram

(Sngram). We de�ne this total score Stotal by the fol-

lowing formula;

Stotal = Sacoustic +W1 � Spenalty +W2 � Sngram (4)

where W1 and W2 are weighting parameters. We

treats W1 as an experimental constant value, because

the penalty score is based on heuristic penalty rules

and it represents the plausibility of the whole utter-

ance. As for W2, it is required to be normalized by



the length of the utterance because the score Sngram
deteriorates as the utterance becomes longer. Then,

normalization by the number of concepts n was done

as follows;
W2 = C=(n+ 1) (5)

where C is a weighting constant.

5.2. Results

Figure 3 illustrates understanding error rates of the

�rst rank, within the third and the tenth. Each error

rate is the average of the six males. The standards

for judging an answer to be correct are that inten-

tion, concepts and their boundaries, conceptual de-

pendency, and semantic values of phrase candidates

are correctly extracted. These results show that the

particle-category trigram reduced the error rate of the

�rst rank from 23.5% to 19.1% and halved it within

the third and the tenth rank in comparison with the

penalty score. It was also con�rmed that this model

was particularly helpful in suppressing errors of un-

reasonable inversion between cases, and unmatched

dependencies between an adverbial clause and an at-

tribute of a predicative concept.

As for the weighting parameters, we found that;

(1) 0.2 for W1 of the penalty score was the best, (2)

the system performance deteriorated slightly with an

increase in W2 which was not normalized, but that

the normalizedW2 canceled this degradation and per-

formed better than W2 which had not been normal-

ized.

5.3. Discussion

By examining in detail the errors in the N -best out-

puts, we obtained results of error analysis which is

listed in Table 4. The results show that two thirds of

all errors are semantically plausible. This means that

our method is likely to be promising to reasonably un-

derstand one utterance, although there still remains

some errors to be suppressed. Thus, further improve-

ment will focus on utilizing dialog context in speech

understanding rather than solving the issues of an ut-

terance, e.g., senseless coexistence among concepts.

Table 4: Types of understanding errors at a higher

rank than that of a correct answer.

#errors 90

plausible 61 (68%)

inplausible
higher knowledge required 12 (13%)

coexistence among concepts 17 (19%)
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Figure 3: Understanding error rates (%).

6. CONCLUSION

We propose a statistical language model for cap-

turing plausible sequences of linguistic features based

on concept-driven speech understanding. Experimen-

tal results convinced us that this model is e�ective

in attaining a high degree of accuracy in understand-

ing spontaneous speech. Future works will include the

use of information regarding dialog context for more

precise understanding.
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