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ABSTRACT

We have proposed a method of concept-driven
semantic interpretation based on general semantic
knowledge of conceptual dependency.
proach, a concept is a unit of semantic interpretation
and an utterance is regarded as a sequence of con-

In our ap-

cepts that convey an intention. However, a consider-
able number of accepted results were not syntactically
meaningful. This is because the order in which lin-
guistic features occurred in the sequence of concepts
was not taken into account in constructing the whole
meaning from the concepts: only semantic constraint
was used to attain linguistic robustness. Therefore,
we introduce a statistical language model which cal-
culates the plausibility of a sequence of concepts from
the points of view of the order in which shallow lin-
guistic features occur. Experimental results of speech
understanding for 1000-word-vocabulary spontaneous
speech show that the proposed method significantly
improves the system performance.

1. INTRODUCTION

It is essential that a spoken dialog system can un-
derstand spontaneous speech so that it can be used
easily by a naive user whose utterances comprise a
large variety of expressions, which are often ill-formed
[1, 2. Thus, to improve speech recognition, such
a system must have both linguistic robustness and
adequate constraint. Our method for attaining lin-
guistic robustness involves exploiting semantic knowl-
edge so that it represents relations between phrases
We have proposed
a method of concept-driven semantic interpretation
based on general semantic knowledge of conceptual
dependency [3]. In our approach, a concept is a unit of
semantic interpretation and an utterance is regarded
as a sequence of concepts that convey an intention
(Figure 1).

by semantic-driven processing.

The performance of this method, however, was not
adequate for practical use.
of accepted results were not syntactically meaning-
ful, although they were semantically meaningful. This
was because the order in which linguistic features oc-
curred in the sequence of concepts was not taken into
account in constructing the whole meaning from con-
cepts. Only semantic constraint was used to attain
linguistic robustness.

A considerable number

Therefore, we introduce a statistical language model
which takes into account the occurrence order of lin-
guistic features without eliminating linguistic robust-
ness and generality. This model calculates the plau-
sibility of the sequence of concepts from the point of
view of shallow linguistic features. This paper dis-
cusses issues concerning the incorporation of the sta-
tistical language model of shallow linguistic features
into the framework of semantic-driven speech under-
standing. It also reports empirical evaluation of the
system’s performance with spontaneous speech data
concerning a sightseeing task with a 1000-word vo-
cabulary.

<meaning hypothesis>
<predicative concept> | modality: permission

<intention> HOW
| tense: present
(can | get to) P

modifier: adverbial case: place-from case: manner

<concept> <concept>
<concept>:

/

7d like to go)

to the Daibutsu)
semantic
interpretation

ikitaiNdesu-ga
, (I'd like to go),

<phrase lattice>

eki-kara dooyaQte

(from a station) (how) i

ikeba-iiNdesuka
(can | get to)
A

I
Daibutsu-ni
(to the Daibutsu)

F—— Hase-no
(of Hase)

Figure 1: Concept-driven semantic interpretation.



2. LINGUISTIC FEATURES TO BE
MODELED

When we express a meaning we have in our minds,
various expressions of it can be produced as utter-
ances. Among these utterances, there are some ex-
pressions which are rarely used, although they can be
interpreted as the same meaning. In Japanese, it is
considered that the order of phrases is basically free,
but, for example, a phrase which includes a particle
“wa” indicates the topic (topic case) and is often ut-
tered at the beginning of an utterance. Such a topic
case rarely occurs at the middle or at the end of an
utterance. Other linguistic features like cases, attribu-
tive/adverbial modifiers and predicatives are also con-
sidered to occur according to basic principles of lin-
guistic constraint on their order.

We utilize these basic principles of linguistic fea-
tures as a constraint model in order to improve speech
understanding. Our model evaluates linguistic cost
according to, for example, whether a topic case is fol-
lowed by an object case and whether that is usual
or unusual in an utterance. Such a onstraint re-
quires both a score which represents the plausibil-
ity of a sequence of linguistic features, and the ac-
ceptance of various expressions of spontaneous speech
as knowledge sources. Therefore statistical approach
is desirable. Moreover, to make the method task-
independent, the units of constraint must be shal-
low linguistic features, rather than words which would
make the method dependent on training corpus.

Hase-de

<concept A>
(in Hase)

mitaiNdesu-ga moyorieki-wa dokodesu-ka
(I want to see) (the nearest station) (where is)

<concept B> <concept C>

Daibutsu-wo

(the Daibutsu)
attribute: [adverbial clause] [topical case] [query]
particle-category: <conjunctive> <wa> <ka>

Figure 2: A sequence of particle-categories.

Therefore, we use attributes of the concept as the
unit of the statistical model. The attributes are shal-
low linguistic properties that are classified, such as
cases and adverbial clauses, and have a dominant role
in constructing the global structure of an utterance.
The attributes are decided by morphological infor-
mation such as particles, parts of speech and con-
jugations. Attributes in Japanese are mainly repre-
sented by the particle-category, so we use the particle-
category of the concept as the unit of the model which
captures the sequence of the attributes approximately
(Figure 2). The particle-category is a classification of

function words, auxiliary verbs, and conjugations. Ex-
amples of correspondence between the attributes and
the particle-categories are shown in Table 1.

Table 1: Examples of correspondence between the
attributes and the particle-categories (partly).

Attributes Particle-categories |
topic case “wa, Qte”
agent case “ga”
object case “wo”
source case “kara”
goal case “made”
place case “ni, de”
conditional clause | “ba”, “nara, tara” (auxiliary)
query “ka”

3. STATISTIC LANGUAGE MODEL

We use N-gram (trigram) for modeling a sequence
of the particle-categories of a concept. This model
represents more global relations of linguistic features
than that of word N-gram or phrase-based particle N-
gram [5] because the particle-category trigram here is
based on the concept which integrates phrases into a
semantic unit as a dominant element for determining
the meaning of an utterance.

During the training of the model, if a trigram prob-
ability is higher than a certain threshold, the trigram
is given a constant value. This is because we want
to extract trigram rules which have general plausi-
bility in spontaneous speech, and to handle such tri-
gram rules as they should have same probability. The
particle-trigram model based on concept is defined in
the following manner. Let C1,C5,...,Ch,...,Cn be
a sequence of particle-categories in an utterance which
includes N concepts. The occurrence probability of a
particle-trigram P(C,,|Cp—2,Cp—1) is trained by the
formula;

P(Cn | Cn727 Cnfl)

|

where Pipreshotd (0 < Pinreshota < 1) is the thresh-
old for extracting the trigram rule, and Const. is the
same probability which is given to all the trigram
rules. Then, if we let P(S) be the total occurrence
probability of a whole utterance, and Cp, Cn41 be
categories which mean the beginning and the end of
the utterance, we have

frequency(Cr_2, Cr_1, Cy)
frequency(Cr_2, Cr_1)

Const.

(< Pthreshold) (1)
(Z Pthreshold)



n=N+1

P(S) =p(C1 | Co, Co) H P(Cy) (2)

This probability is used in the process of speech un-
derstanding as the logarithmic likelihood for linguistic
score Spgram by

Sngram = _lOg(P(S))
n=N+1

= —log(p(Cy | Co, Co)) — Y log(P(Crn)) (3)

4. TRAINING THE MODEL

The method for training the particle-category tri-
gram and the text-based evaluation are described here.

4.1. Conditions

16 particle-categories are defined, including eleven
particle-categories for representing cases (“wa, Qte,
ga, wo, mo, ni, de, kara, made, e, ka”), three
for representing adverbial clauses (<conditional>,
<conjunctive-1>, <conjunctive-2>), one for repre-
senting the others (<else>) and one symbol (“-”)
for the beginning/end of an utterance. The particle-
category trigram was trained with 1091 text data con-
cerning a sightseeing dialog. The texts were manually
segmented into units of a concept, then automatically
tagged with the 16 particle-categories. The threshold
for extracting the trigram rule is 0.05 to give the same
probability of 1.0.

Table 2: Results of training the model.

variety of trigrams 375 kinds
#training samples | 3955 samples
#possible trigrams | 4096 (16°)

Table 3: Examples of trigram rules extracted from a
sequence of particle-categories (frequency).
<-/-/wa> (160), <wa/ka/-> (125), <-/-/de> (119),
<else/ka/-> (115), <wo/else/-> (98), <-/-/else> (92),
<-/-/conditional> (82), <else/else/-> (79), <-/-/Qte>
(55), <-/-/wo> (54), <ga/ka/-> (44), <-/wa/ka> (42),
<de/wo/else> (36), <wa/ni/ka> (22)
<wa/made/mo>,
<wo/made/wa>, <ni/kara/de>

not found: <ga/ga/ka>,

4.2. Results

Table 2 shows the results of training the model.
The number of training samples was almost equal to
the number of possible trigrams, so we think that the
amount of training data is reasonable for extracting

plausible trigram rules. Plausible trigram rules which
occurred with high frequency and trigrams which were
not found are shown in Table 3. This suggests that
the model captured linguistic features of spoken dialog
fairly successfully. To evaluate linguistic constraints of
the model, linguistic scores for both the training cor-
pus and for texts of understanding errors were calcu-
lated by equation (3) (the lower the score, the better).
A score of 0.1-2.0 was given to the training corpus
and a score of 4.5-13.1 was given to the errors. These
results convinced us that reasonable constraints can
distinguish between plausible texts and errors.

5. SPEECH UNDERSTANDING
EXPERIMENTS

We have used this trigram model to carry out
1000-word-
vocabulary spontaneous speech in human to machine

speech-understanding experiments for

communication.

5.1. Conditions

162 speech data from six males were used for the
evaluation. These were collected in an office environ-
ment with an experimental spoken dialog system that
was used for the sightseeing task. We told the subjects
to ask questions freely. These speech data did not in-
clude types of utterance that consist of only one con-
cept, for example, yes/no-responses or fragments like
“ashita-desu (tomorrow)”. In the process of speech
recognition, phrase spotting used intra-phrase net-
works that had a vocabulary of 1005-word which in-
cluded 23 filled-pauses. Speaker-independent syllable-
HMMs were used. In the semantic interpretation, 102
concepts and 13 types of conceptual dependency were
used. 40 linguistic penalty rules [4] for heuristic con-
straint were also used. The semantic interpretation
outputs the understanding results as N-best meaning
hypotheses.

A total score of each meaning hypothesis is calcu-
lated by combining three scores; acoustic likelihood
of phrase spotting (Sacoustic), penalty score (Spenaity)
and linguistic score of the particle-category trigram
(Sngram). We define this total score Sioq; by the fol-
lowing formula;

Stotal = Sacoustie + Wl * Spenalty + W2 * Sngram (4)

where Wi and Wy are weighting parameters. We
treats W, as an experimental constant value, because
the penalty score is based on heuristic penalty rules
and it represents the plausibility of the whole utter-
ance. As for Wy, it is required to be normalized by



the length of the utterance because the score Sygram
deteriorates as the utterance becomes longer. Then,
normalization by the number of concepts n was done

as follows;
Wy =C/(n+1) (5)
where C' is a weighting constant.
5.2. Results

Figure 3 illustrates understanding error rates of the
first rank, within the third and the tenth. Each error
rate is the average of the six males. The standards
for judging an answer to be correct are that inten-
tion, concepts and their boundaries, conceptual de-
pendency, and semantic values of phrase candidates
are correctly extracted. These results show that the
particle-category trigram reduced the error rate of the
first rank from 23.5% to 19.1% and halved it within
the third and the tenth rank in comparison with the
penalty score. It was also confirmed that this model
was particularly helpful in suppressing errors of un-
reasonable inversion between cases, and unmatched
dependencies between an adverbial clause and an at-
tribute of a predicative concept.

As for the weighting parameters, we found that;
(1) 0.2 for Wy of the penalty score was the best, (2)
the system performance deteriorated slightly with an
increase in W, which was not normalized, but that
the normalized W5 canceled this degradation and per-
formed better than W5 which had not been normal-
ized.

5.3.

By examining in detail the errors in the N-best out-
puts, we obtained results of error analysis which is
listed in Table 4. The results show that two thirds of
all errors are semantically plausible. This means that

Discussion

our method is likely to be promising to reasonably un-
derstand one utterance, although there still remains
some errors to be suppressed. Thus, further improve-
ment will focus on utilizing dialog context in speech
understanding rather than solving the issues of an ut-
terance, e.g., senseless coexistence among concepts.

Table 4: Types of understanding errors at a higher
rank than that of a correct answer.

#errors || 90 |
plausible 61 (68%)
. . higher knowledge required 12 (13%)
inplausible -
coexistence among concepts 17 (19%)

315 =
B < rank 10

23.5

Error rates (%)

19.1

18.5

8.0

acoustic likelihood acoustic likelihood acoustic likelihood
+ penalty score + penalty score

+ particle-category
trigram score

Figure 3: Understanding error rates (%).

6. CONCLUSION

We propose a statistical language model for cap-
turing plausible sequences of linguistic features based
on concept-driven speech understanding. Experimen-
tal results convinced us that this model is effective
in attaining a high degree of accuracy in understand-
ing spontaneous speech. Future works will include the
use of information regarding dialog context for more
precise understanding.
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