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ABSTRACT

It is well-known that HMMs only of the basic structure

cannot capture the correlations among successive frames

adequately. In our previous work, to solve this problem,

segmental unit HMMs were introduced and their e�ec-

tiveness was shown. And the integration of � cepstrum

and �� cepstrum into the segmental unit HMMs was also

found to improve the recognition performance in the work.

In this paper, we investigated further re�nements of the

models by using a mixture of PDFs and/or context depen-

dency, where, for a given syllable, only a preceding vowel

was treated as the context information. Recognition ex-

periments showed that the accuracy rate was improved by

23 %, which clearly indicates the e�ectiveness of the re-

�nements examined in this paper. The proposed syllable-

based HMM outperformed a triphone model.

1. INTRODUCTION

Hidden Markov Models(HMMs) are a widely used tech-

nique for speech recognition. But it is also well-known

that the HMMs only of the basic structure have a defect

that they cannot adequately represent the temporal cor-

relations between successive feature vectors. In our previ-

ous works[3][6], to solve the problem, segmental unit input

HMMs were studied, where a feature vector was derived

from several successive frames. While the recognition per-

formance was improved by using the segmental HMMs, the

integration of � cepstrum (�C) and �� cepstrum (��C)

into the segmental HMMs further increased the recognition

rates.

The use of the segmental statistics as acoustic features pro-

vides us with new problems, which are speci�c to the seg-

mental HMMs. When using the features immediately in-

stead of the frame-based parameters, since the dimension

of the feature parameters is inevitably incremented, it re-

sults in increasing computational cost and decreasing pre-

cision in the estimation of covariance matrices. To avoid

these, the dimension of the feature parameters should be

reduced by some methods without degrading modeling ca-

pabilities. Bocchieri et al.[2] and Brown[7] applied the prin-

cipal component analysis to adjoined 2 frames in DTW-

based and HMM-based recognition respectively. The dis-

criminant analysis was also applied to adjoined 2 frames

in HMM by Bahl et al.[8]. In our previous studies[3][6],

both the methods were used for 4 successive frames and

the resulting segmental statistics were introduced into

In our laboratory, speaker independent HMMs with a mul-

tivariate Gaussian of a full-covariance matrix characteriz-

ing the features' distribution in a state have been studied.

However, the variances of some elements were estimated

to be so large that clear separation could not be observed

among several classes. To cope with these phenomena, in

this paper, a mixture of multivariate Gaussians with full-

covariance matrices was introduced, where mixtures of 2

and 4 PDFs were examined.

As for a unit of acoustic modeling, we have been using

syllables, most of which have more than or equal to 2

phonemes, where almost all syllables are a type of consonant-

vowel. There exist only 114 syllables in Japanese. Al-

though context dependent phoneme models, e.g. triphone,

are widely used to re
ect the in
uences of coarticulation

on the features' distribution of a focused phoneme, the

above characteristics indicate that the in
uence is already

involved in syllable-size HMMs to some extent. In this

paper, however, aiming at more precise modeling of the

in
uence, the information of a preceding phoneme, which

is a vowel in most of the cases, was introduced as context.

And the context dependent syllable models were built us-

ing the segmental statistics.

Unlike the Japanese language, English has more than one

thousand kinds of syllables, indicating that it is di�cult

to built syllable-size acoustic models in English. Some re-

searchers, however, found the e�ectiveness of using the syl-

lables as a unit of acoustic modeling even in English[10][11][12].

Then in this paper, comparisons of the recognition perfor-

mance between the syllable-size models and the triphone

models, which are a world-wide standard modeling method,

were carried out in Japanese.

2. SEGMENTAL UNIT INPUT HMMs

For an input symbol sequence y = y1y2 � � � yT (T is the

length of the input sequence) and a state sequence x =

x1x2 � � �xT , the output probability of HMM is given by

the following equations[6].
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Eq.(1) or Eq.(2) is conditional density HMMs of 4-frame

segments; Eq.(3) or Eq.(4) is those of 2-frame segments;

and Eq.(5) is a segmental unit input HMM of 2-frame

segments[7]. Eq.(4) was modi�ed as follows :

=
X
x

Y
i

P (yijyi��(i); xi�1xi)P (xijxi�1); (7)

where � (i) is selected to maximize likelihood of the obser-

vation sequences and to determine dynamically temporal

dependence[4]

The segmental unit input HMM proposed in our previous

study[3][6] is obtained by approximating Eq.(2), that is, we

use only the numerator of Eq.(2) :
P (y1 � � � yT )

'

X
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Y
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As mentioned in Section 1., the immediate use of several

successive frames as an input vector inevitably increases

the dimension of parameters. Then, the K{L expansion

was used to reduce the dimension in the experiments.

3. REFINEMENTS OF THE MODELS

3.1. Energy

In this study, the term of energy was de�ned as the 0-th

mel-cepstrum coe�cient. And its regression coe�cients,

�E and ��E, were used as the dynamic feature of the

energy. These terms are derived in the following formula

producing the r-th regression coe�cient[9];
Rrk(t; T;�T;N)
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where Ck(t) is the k-th cepstrum coe�cient at time t, T

is time width for computing regression coe�cients, �T is

a frame period of speech analysis, and N is the number

of frames for computing regression coe�cients. Weighting

function Pr(X;N) is represented as
P1(X;N) = X (10)

P2(X;N) = X
2
�

1

12
(N

2
� 1): (11)

Here, P1(X;N) and P2(X;N) correspond to a linear and a

quadratic regression coe�cient respectively. In the exper-

iments, while �C and ��C were used assuming no cor-

relation between them, the correlation between �E and

��E was estimated to make a covariance matrix.

3.2.Mixture of PDFs

We assumed that the output probability density function

(PDF) of bij(y) could be represented by an addition of M

Gaussian distributions.

bij(y) =

MX
m=1

�ijmbijm(y) (12)

Here, �ijm is the m-th branching factor at transition from

state i to state j . And bijm is m-th PDF at the transition.

They satisfy the following conditions.
MX
m=1

�ijm = 1;

Z
bijm(y)dy = 1 (13)

Even with a mixture of PDFs, the equations for re-estimating

the parameters are obtained by the Baum-Welch algorithm

as in the case of the single Gaussian HMM, which are

shown in the below.

�̂ijm =

P
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(14)
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A = (yt � �ijm)(yt � �ijm)
t

In the experiments, full covariance matrices were used.

One of our previous works showed that the use of a sin-

gle Gaussian with a full covariance matrix gave us almost

the same performance as that with a mixture of 10 to 16

Gaussians of diagonal matrices[5].

3.3. Context Dependent Models

In recent works, to re
ect the in
uences of coarticulation

on the features' distribution of a focused phoneme, context

dependency is widely introduced into phoneme HMMs.

However, since the number of the models is drastically

incremented, the context dependency will often result in

undesirable phenomena, such as the increase of computa-

tional cost and the decrease of precision in estimating the

parameters. To avoid these phenomena, we have been us-

ing context independent models by a unit of syllables.

In English, to make context dependent models, all the

kinds of phoneme should be considered as right/left con-

text irrespective of a unit of acoustic modeling,

i.e. phonemes/syllables. And this is the case with phoneme

models in Japanese. However, if syllables are allowed to

be used as a unit of acoustic modeling in Japanese, we can

�nd a great di�erence between a set of entries of right con-

text and that of left context. Namely, with syllable-size

models, only several kinds of phonemes(almost cases are



vowels) can be found in the left context. As for the right

context, all the phoneme can appear as in English. There-

fore, left-context dependency with syllable-size models is

expected to increase the recognition performance without

the above mentioned undesirable phenomena.

Based on these considerations, we investigated the syllable-

size HMMs with left-context dependency. In this case, all

the entries of left-context was only the following 7 phonemes;

/a/, /i/, /u/, /e/, /o/, /N/, and /@/(silence). And the

total number of left-context dependent syllable-size models

was 908.

4. EXPERIMENTS AND RESULTS

Recognition experiments were carried out using the pro-

posed HMMs, i.e. the segmental input models with a

mixture of PDFs and/or with context dependency, and

conventional HMMs with single Gaussians or those with-

out context dependency. Comparison among these models

were done based on continuous syllable recognition tests in

a speaker-independent mode.

In these experiments, continuous HMMs (having full co-

variance matirices) with 5 states (4 output distributions)

having duration control were used. They were trained by

syllable-segmented data from A{J sets (50 sentences each)

of ATR speech database (uttered 6 male speakers). For

syllable categories which have a small number of data in

the database, 216 word data sets were additionally used for

the categories. After that, they were retrained with MAP

estimation[13] by using one of following three databases.

� Acoustic Society of Japan database uttered by 30

male speakers(ASJ)(4518 sentences)

� Japan Newspaper Article Sentences database uttered

by 125 male speakers(JNAS)(12703 sentences)

� both ASJ and JNAS(ASJ+JNAS)

The test data consisted of 939 newspaper article sentences

spoken by 9 other male speakers.

The analysis conditions are as follows: sampling frequency

is 12kHz; Hamming window size is 21.33ms ; frame period

is 8ms; and LPC analysis is of the 14th order, feature pa-

rameters are LPC 10 mel cepstrum coe�cients and energy.

The number of syllables used as a unit of acoustic modeling

was 114.

We performed the evaluation using each of the following

methods of parameter con�guration:

(1) C+�C+��C LPC mel-cepstrum coe�cients calcu-

lated frame by frame are used in addition to their

�rst and second derivations.

(2) C+�C+��C+(�E+��E) (1) + the �rst and sec-

ond derivatives of energy

(3) C(K-L)+�C+��C Segmental statistics calculated

from 4 successive frames (40 dimensions) with the di-

mension reduction into 20 by the K-L expansion are

used in addition to the �rst and second derivatives

of the LPC mel-cepstrum coe�cients.

(4) C(K-L)+�C+��C+(�E+��E) (3) + the �rst

and second derivatives of energy

Table 1: Comparison of 3 database[%]
speaker-independent mode, average rate over 9 male speakers

METHOD DATABASE ACC. COR. SEG.

ASJ 48.7 63.1 81.7

C+�C+��C JNAS 53.9 67.7 82.7

Mix1 ASJ+JNAS 53.1 67.1 82.4

C(K-L)+�C+��C ASJ 61.8 71.5 87.1

+(�E+��E) JNAS 69.9 77.4 89.3

Mix4 ASJ+JNAS 70.1 78.3 89.1

First, we compared the 3 databases in terms of the recogni-

tion performance separately indicated by each databases's

models. Table 1 shows the result of experiments. \ACC."

is the accuracy rate of recognition, \COR." is the correct

rate of recognition, and \SEG." is the segmentation rate

de�ned as follows:

SEG =
Ntotal �Nins �Ndel

Ntotal

[%] (17)

where Ntotal is the number of syllables in the correct sylla-

ble sequence, Nins is the number of inserted syllables and

Ndel is the number of deleted syllables.

In comparison of ASJ with JNAS, the models built with

JNAS give us 5 to 8% improvement in accuracy and correct

rates. This is considered due to JNAS has e�cient data for

the parameter estimation. As shown in Section 4, JNAS

has three times as many sentences as ASJ has.

Table 2: Continuous Syllable Recognition [%]
speaker-independent mode, average rate over 9 male speakers

(ASJ+JNAS)

METHOD #mix context ACC. COR. SEG.

1 no 53.1 67.1 82.4

(1) 2 no 58.1 69.7 85.1

C+�C+��C 4 no 61.6 72.1 86.3

1 yes 55.0 73.1 79.2

(2) 1 no 54.8 70.3 81.6

C+�C+��C 2 no 64.7 73.8 87.8

+(�E+��E) 4 no 67.3 75.7 88.7
1 yes 59.0 76.4 80.7

(3) 1 no 57.0 71.0 83.3
C(K{L)+�C 2 no 63.3 73.5 86.5

+��C 4 no 66.2 76.0 88.5

1 yes 57.8 76.0 79.7

(4) 1 no 57.6 72.3 82.8

C(K{L)+�C 2 no 67.0 75.6 88.4

+��C 4 no 70.1 78.3 89.1

+(�E+��E) 1 yes 59.9 77.4 80.6

Next, we investigated the e�ectiveness of energy, a mixture

of PDFs, and context dependent models. In the experi-

ments, we used ASJ+JNAS as training database. Table

2 shows the experimental results. Throughout the experi-

ments, method (4) with a mixture of 4 PDFs gave us the

best recognition rate, i.e. 70.1 % in accuracy rate and 78.3

% in correct rate. Comparison between (3) and (4) irre-

spective of the number of PDFs shows that the integration

of � and �� E improves 3 to 4 % in accuracy rate and 2

to 3 % in correct rate. This clearly indicates the validity

of the introduction of the energy-related parameters.

Di�erence in the number of PDFs shows the following �nd-

ings regardless of the method. Accuracy rate and correct

rate in 2-mixture models is increased by approximately 9

% and 2 % respectively from those in 1-mixture models.



Further improvements by about 3 % are found in both the

rates in 4-mixture models from those in 2-mixture models.

Larger improvements in accuracy rate than in correct rate

means that the increment of the number of PDFs especially

helps avoiding syllables' being inserted.

Comparison between context dependent models and con-

text independent models with 1-mixture shows 5 to 6 %

improvement in correct rate and only 1 % improvement in

accuracy rate. And this is the case of every method. The

observed improvements are not as high as expected, which

is considered due to lack of training data caused by the

increase of the number of model parameters.

Finally, we compared triphone models with syllable models

in continuous syllable recognition experiments. Although

the analysis condition was the same between the above

two models, frame-based and segment-based models were

separately built as syllable-size models, i.e. syllable con-

straint of phoneme sequences. Therefore, we examined

three modeling con�gurations listed in Table 3 and Table

4. While triphone models and frame-based syllable models

were trained with parameters of (2), segment-based syl-

lable models were with (4). And the mixture number of

PDFs is 4 in both the syllable models. Training of triphone

models was done with HTK, where the mixture number

of PDFs is 16 with diagonal covariance matrices and the

model's topology is 5 states with 3 output distributions.

Table 3: Number of free-parameters for triphone and syl-
lable models

Num. of

METHOD Num. of Num. of estimated duration

models states parameters control

triphone

(frame)
7921 3013 3133520 no

syllable

(frame)
114 570 1927968 yes

syllable

(segment)
114 570 3295968 yes

Table 4: Syllable recognition rate for triphone and sylla-
ble moels[%]

speaker-independent mode, average rate over 9 male speakers

substi- inser- dele-

METHOD ACC. COR. tution tion tion SEG.

triphone

(frame)
64.2 79.9 17.7 15.7 2.4 82.0

syllable

(frame)
67.3 75.7 21.4 8.3 3.0 88.7

syllable

(segment)
70.1 78.3 19.1 8.2 2.7 89.1

Table 4 shows results of the experiments. Although frame-

based syllable models are worse in correct rate than tri-

phone models, they are better in accuracy rate. On the

other hand, segment-based syllable models also show bet-

ter results in accuracy rate than triphone models with al-

most the same correct rate as that of triphone models.

However, we should notice that the syllable-based HMM

has a duration distribution for each state, but not for the

triphone-based HMM. These results led us to con�rm that

syllables are an appropriate unit of acoustic modeling in

speech recognition.

5. CONCLUSION

In this paper, we examined several re�nements of the syllable-

size acoustic models by using a mixture of PDFs and/or

context dependency, where only a preceding vowel is used

as context. Results of continuous syllable recognition ex-

periments show that, while the use of energy in the form

of its derivatives and that of a mixture of PDFs improves

accuracy and correct rates, context dependent modeling

unexpectedly shows only a little improvement of accuracy

rate. This is considered due to lack of training data for a

increased number of models. As future plans, we will intro-

duce other training methods, ex. MCE, to the segmental

HMMs and verify their validity.
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