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Abstract This work represents parts of an ongoing project to investigate
the use of automatic speech recognition in computer assisted lan-
This paper investigates how to improve the acoustic modellinguage learning (CALL), [6]. The techniques to score pronunci-
of non-native speech. For this purpose we present an adaptatigiion which have been developed so far within this project, have
technique to combine hidden Markov models of the source argken based on the assessment of the pronunciation of read speech
the target language of a foreign language student. Such modsj a student. In a next step it is desired to recognise a student's
combination requires a mapping of the mean vectors from tagpeech as spoken in a dialog with the computer. In such a setup
get to source language. Therefore, three different mapping aj-is necessary to model non-native speech. Compared with na-
proaches, based on either phonetic knowledge and/or acoustiggk speech, non-native speech is characterised by different spec-
distance measures have been tested. The performance of tig characteristics especially in the higher formants, see also [1].
model combination method and several variations of it has beesy modifying speaker independent models of the target language

measured and compared with standard MLLR adaptation. For ti@th components of the source language, it is hoped to account
baseline model combination small improvements of recognitiofor these spectral differences.

accuracy compared to the results based on applying MLLR were

obtained. Furthermore, slight improvements were found when u®&ne of the additional characteristics of the corpus of non-native

ing an a-priori approach, where the models were combined witspeech spoken by students of English used for the experiments

predefined weights before applying any of the adaptation teclpresented here is that the students speak haltingly. They also

niques. make pronunciation errors (aba% of transcriptions has been
error marked by phoneticians) and the speech rate is on average
reduced by a factor of.2.

1. Introduction In the next section the theoretical framework of the bilingual

Current speaker independent recognition system are known %iaptation algo_rithm will b_e derived. Addi_tionally, two modifica-
perform considerably worse when recognising non-native speectll]‘?rls of the b_as]lc”adap;att)lon ?jpproac_h W'”fbs pre;ifnted as well
Chase showed that such performance deterioration is due to b-gﬁ's section 'ﬁ obowe y ﬁ |scu35|ong t reel ifrerent ma}ﬁ)b
acoustic modelling, [3]. Similarly, initial investigations about ping approaches between the source and target language will be

recognition characteristics of non-native speech made by By”géscussed. In section 4 the experimental results will be presented.

et al.,[2] demonstrated the need to improve the modelling of non;
native speech. In this paper we present a technique to adaft
to non-native speech which deploys the additional informatior]ie

which is given if the kind of accent, i.e. the mother-tongue of the t Mz be a model set of the target language contairig
; ) . . . .. models, andMs a model set of the source language wijhx
speaker is known. This technique is based on linearly combinin . . . ;
. odels. Assume a continuous density multiple mixture HMM
each mean vector of a model from the target language with the. . e
- With N states, transition probabilities;, where the output prob-
mean vectors of a model of the source language. The combina; .. ; L
ability of the ith state,b; for a speech frame vectar is given

tion weights can be estimated by applying re-estimation formulagS

Derivation of Linear Model Combination

similar to those used in the MLLR adaptation algorithm, [5].

M
Unlike other adaptation schemes which are based on a matrix bi(o) = Zwikbik(o) Q)
transformation from a speaker independent system to the accent k=1

specific acoustic space, the approach presented here constrgjas, the output probability of each mixture component given as
the search to the space between the model sets of the two lan-

guages involved. Incorporating information from both languages bix(0) = 1 . efé(ofwk)’cfkl (o—pik) )

is hoped to provide more direction in the acoustic space towards (2m)2 | Cix |2

the location of better models for non-native speech and poten-

tially allow faster adaptation on small amounts of data. wherep;, denotes the mean of mixture componérgvector of



lengthn), w;;, the mixture weight and’;;, then x n covariance 2.3. Bilingual Model Alignment

matrix.
Similar to MLLR, this model combination technique requires

2.1. Sing|e Mixture Gaussians alignment of the transcriptions of the adaptation sentences with

the speech data. An approach to improve modelling of non-native
Firstly, the re-estimation expressions will be derived for the casgpeech could be to include the model set of the speaker's mother
of single mixture HMMs. Assume a mapping of each target meatongue in the alignment stage. Using a mapping from each tar-

to a source mean. Then a new mean can be estimated as get model to one source model, a recognition network was built
C_B 3 consisting of a sequence of target models according to the tran-
fis = Bs(us, — pr,) + pr, (3 scriptions. The mapping source model was put in parallel with

its respective target model. Thus, transcriptions consisting of
whereBs is defined as a diagonal matrix for statén order to  phonemes of both languages were calculated and used for the re-
map from target meapr, to source meams,. Thus, thejth  estimation process.
diagonal elemernt,_ ; represents a linear combination weight for
the respective source and target mean vector elements. The pathe case that a phoneme from the source language is given in
rameters of any linear model space transformation can be fouiige transcriptions, the re-estimated mean is defined as:
through application of the EM algorithm. The method presented -
here represents a modification of the MLLR adaptation algorithm, fis = (1= Bs)(ur, = ps,) + ps, ©)
se_ett[S]. The auxiliary function which has to be minimised can b%therwise the old definition remains:
written as

QLX) = Y F(0,6Meg(F(O,6) () o = Ba(ps, = pm.) + b, 0
=
where) denotes the current set of model parameters)aade-  1hus, for part of the training data the new mean is estimated based

estimated set of parameters. The likelihood of generating the 08D accumulated statistics for the initial target mean, and for the
served speech frames in the state sequérise other part of data, the new mean is estimated starting out from the

source mean. Defir&; as the number of frames associated with
states using the British model, an@. the number of frames us-
ing the Spanish model. With this approach the auxiliary function
rewrites as

T
F(0,01\) = aorn [ ] ao,_,0b0, (0r) (5)

t=1

To estimate the matriBs, it is necessary to differentia@(\, \) _ N N
with respect tdB, using equation 3 and equate it to zero: QAN =D Qui\ {ai 1] +
— i=1
dQ(A,A)

i s R A (6) Ty B T> _

dB. > F(OIx) [Z Yoz (D)loghsr (01) + Y 7ss (t)loghas (1) | (11)
keSS t=1 t=1
Solving this derivative for thg-th element oB; yields (index;

indicates a vector component):

Y vs() [or; — py ]

Solving forb,,; yields

" T s — im) @ b =
t=1 18 Ss,J — HTs.j
[Ez’;1 AHTS + 2321 Auss - 2321 AHTsvlLSs ):| 5Ts,53 (12)
where~;(t) the probability of state occupancy at tirhe [ZtTé1 Yor, (t)ez, ; + Efil Yes, (t)CSS,j] 82 s,
2.2. Tying of Model Means into Regression with
Classes

or,s = (ms,; — pry;)
Given the problem of data sparseness, it is desirable to extend the Aur = yop(t)erj{ot; — pr;}
above derivation to the case of tied combination matrices. Ape = es(t)esj{on; — ps;}
If a Bs matrix is shared byr states{si, sz ... sgr} the solution Augus = 7ss(t)esjors
for b; becomes
b, = Zrm X Ve (e, [on = prsl s,y = #1) g 2.4.  A-priori Combination
7 R T . )2

Yore1 2oy Vo (W)er; (Mss — B, 5) From Figure 2 it is apparent that an increase in the number of

The above derivation of the estimation of the combination matriadaptation sentences does not significantly increase the recogni-
can be extended to the case of multiple mixtures in a straightfotion performance. One possible explanation is that inaccurate
ward way, as they can be pictured as multiple weighted statesiodelling by the target models causes a large number of align-
For an equivalent derivation see [5]. All that changes in equatioment errors which makes MLLR adaptation ineffective. Like

(8) are the indices. most maximum likelihood estimators, the ones discussed in this



paper have been shown to find local maxima, but not global ones.
Starting the estimation process at a different location might yield
different local optima and thus improved models. Therefore, we 0.
propose a third model combination approach which combines
source and target models using a-priori weights before executing

R Non—native 1
o—=o Non—native 2
Native

re-estimation. For example, examination of the weights shown in 02 ‘ “
Figure 1 suggests that models with improved non-native mod- ‘ § X
elling are likely to have combination weights in the range of o b
0.0 —0.2. R l il \i - M
3. Mapping from Target to Source Means ’ ’ 1
The model combination technique requires a mapping of each o T e T

target model mean vector with a mean vector of the source lan-

guage. This mapping can be based on acoustical distance m&gure 1: Comparison of model combination weights for non-
sures and/or phonological knowledge. We experimented withative and native speakers

three different approaches

1. Mixture-level: For h target mean th rce mean with . . -
ture-level: For each target mean the source mea twelghtsforthe native speaker are distributed aradufdind gen-

minimum Euclidean distance was found. This mapping is . : : .
o h edally are smaller in magnitude than the weights of the non-native
based solely on acoustic distances and as such disregards

. . %peakers. This indicates that an improved HMM for foreign ac-
any connectivity between mixture means of a state and ) .
model. cented speech might be found through the combination of models

from the source and the target language. Likewise, the model
2. State-level: This mapping approach moves up to state levetombination approach might have little impact on improving the
and calculates the closest source state for each target statthdelling of a native speaker, since the weight will not change
using the following state distance measure: much of the original models.

S Mg . . .
. 1 1 In the following experiments recognition accuracy has been mea-
d(i, j) = -3 > Ms Y _ 1oglbjs (pism)] + logbis (tjem sured using a system with a word-pair grammar. This grammar
=t m=t (13) s based on the stories in simplified English used for the record-
ing of a non-native database. This data was taken from a specif-
The mixture component for each state were then mappégally recorded database of non-native speech of students of En-
using to Euclidean distances as in (1). glish as a foreign language, [6]. Each recognition test contained

3. Model-level: In order to find out which source models are90 sentences per speaker.

likely to be substituted by non-native speakers for targef, rigure 2 the recognition performance for baseline, MLLR and
models, we compared the forced alignment results of thg,ode| combination with all three mapping types is shown as a
target models with the alignments results of a phone-100g,nction of the number of adaptation sentences. Both the fact
with source models. For instance, let British English be thenat the performance does not increase with more adaptation sen-
target language and Spanish be the source language. Thgfces and that adapted models can perform worse than the base-
some examples of those phonemes which are likely to bgse indicate how different the non-native data are to the native
substituted are the Spanish 'b/v’ sound for both the Englisfyget. Because recognition results did not increase significantly
b or'v" or the Spanish 'rr” for the English . Each target yith increased adaptation data, the number of adaptation sen-
model was mapped to that source model which was most ofayces has been limited to 5. Furthermore, this represents a rea-

ten aligned at the same time. Given this mapping on modelynaple number of adaptation sentences to ask for from a user of
level, the states of the model pair where mapped in ordeg caLL system.

i.e. state 2 to state 2 etc, and the mixtures were mapped

using Euclidean distance as in (1). Recognition performance for MLLR and the model combination
technique with all three different mappings can be seenin Table 1.
4. Experimental Results For all speakers the model combination technique yields a max-

imum improvement 06% over the baseline performance and of
For all experiments two sets of speaker independent multiple mix-4% for MLLR. Comparing the different mapping techniques it
ture monophone HMMSs have been used, one trained on Britigtan be seen that the model-level mapping, which is based on the
Eng“sh as the target |anguage and one set trained on Latiﬂ[ror knOWledge OfaStudent, yleldS the best I’eSU|tS. For the state-
American Spanish representing the source language. The modaRd mixture level mapping the performance is similar to MLLR.
were build with the HTK Toolkit ([7]) and the regression class These results indicate that incorporating knowledge about typical

trees were built using the techniques described in [4]. pronunciation mistakes can help to improve non-native recogni-
tion. For the bilingual approach the results are better than MLLR

In Figure 1 the weights for a global transformation of both oneand two of the mappings, but worse than the model-based map-
native and two Spanish accented speakers are compared. Tiieg.



Accuracy for Speaker FL

so has been obtained by using a-priori combined models. In this
o 7 case the same recognition performance as with MLLR could be

1 obtained by using off-line combined models. This means MLLR
equivalent can be achieved without adaptation data if the type of
accent is known.
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sl S E—— | Further experiments will be needed to explore this type of accent
= meome'T || adaptation more thoroughly. Future work will use cross-word

el —_ DBaselne i triphone models instead of monophone models in order to im-
prove the alignment accuracy. Finally, investigations are neces-

10
Number of Adaptation Sentences

sary on the integration of the adaptation technique presented here

Figure 2: Phone Recognition results for MLLR and Model Com-In computer-assisted language learning systems.
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sults for MLLR can be improved without any additional compu-

Table 1: Recognition Accuracy for different mapping approache
(MC1: Model-level mapping, MC2:State-level, MC3:Mixture-
level, MC-Bi:Bilingual Alignment (with regression tree)), 5 adap-
tation sentences

tational loads, since the combination can be done off-line. 6. S.M. Wittand S.J. Young. Performance measures for phone-
level pronunciation teaching in call. BITiLL:Speech Technol-
5. Conclusions ogy in Language Learningages 99-102, Marholmen, Swe-
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A technique for combining speaker independent models of thg, s J. Young, J. Odell, D. Ollason, and P.C. Wood|afte HTK

target and source language for non-native accents has been pre-Book Entropic Cambridge Research Laboratory, 1996.
sented. In these preliminary experiments, the basic technique of

model combination yield slight recognition improvement over the
standard MLLR adaptation technique. Also, some improvement

Speaker| Baseline| A-priori | MLLR | A-priori MLLR

FL 65.93 66.33 66.07 | 70.74
PC 57.12 58.43 59.31 | 58.37
TS 64.10 67.74 65.57 | 64.68

aver. 62.38 63.17 63.65 | 64.40

Table 2: Recognition accuracy for baseline, a-priori baseline,
MLLR, a-priori based MLLR and a-priori model combination
(model-level), 5 adaptation sentences



