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guided by V-seg. We will finally show that combining the
ABSTRACT competition and cooperation models both explain perceptual

] ) ) results and improves recognition scores.
In this paper, we study the influence of the vocalic context on

the perception and automatic recognition of stops. In a previous 2. PERCEPTION RESULTS

perception experiment [1] using conflicting cues stimuli, we

have shown that place of articulation cued by formanthe stimuli were constructed from 30 CV stressed syllables (/p t
transitions may be overwritten by the place cued by the burt. before 10 French vowels, symmetric context) pronounced by
This effect is inversely proportional to the vowel aperture. Herene trained male speaker. For each CV, the N-seg and V-seg
we give special attention to /i/ context where nor burst, novere manually extracted.

formant transitions seem to carry rich information on plar~ ~*

articulation.
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We present here automatic recognition experiments that c
perception results. Taking into account both segments in
identification rates, early fusion of segmental cues perforr e
best and most errors come from the front unrounded voce
context.

We introduce the "burst characteristic frequency" (BF) that
palliates for the poor discriminative power of the traditional
cues in the front context. Moreover we present perception
results showing the perceptual relevance of BF.

1. INTRODUCTION

Noise burst, hereafter calldd-seg and the voiced transition,

hereafter called/-seg both cue place of articulation while not Figure 1: Variation of the N-seg versus V-seg perceptive
being absolutely necessary for place perception. Recente€ight according to the vocalic context. N-seg cquesling
Smits [3] conducted a perception test to asses N-seg and V-§ggponses in light and V-seg ones in dark. McGurk-like fusion
perceptive weights. He proposes a model [4] that explaif§sponses in dark gray and "neither” responses in light gray.
perception results: V-seg is more discriminant than N-seg in an

open vowel context and vice-versa in a closed context. The-1. Global trends

convergence of both perception and identification experimen,

t . . . .
seems to suggest that perception focus on the most contras@g remlnd. here the most impressive effect : the. ratio of
segment. responses imposed by the N-seg versus responses imposed by

the V-seg is heavily dependent on the vocalic context (see Fig.
Our perceptual results on French [1] confirm this trend. W#). These results are confirmed for other languages [3].
give here automatic recognition experiments aiming at th®tatistics restricted to /t/ and /k/ stops exhibit even greater
prediction of such a behavior. We show [2] that most fusiomariation : subjects respond 100% like the N-seg in /y/ context
architectures give good results: they focus as expected on tred 100% like the V-seg in /a/ context. More details about the
most contrastive cues. However, a competitive focus can nasponse pattern as well as results from perception test
entirely explain perceptive weights: the predictions of listenetisvolving N-seg amplitude and length manipulations can be
responses for the front unrounded context are not satisfactofgund in [1, 2].
asin [3, p. 3877].

_ g.z. The /ti/ versus /ki/ paradox

In the following we bring evidence that another subtle fusio

mechanism - cooperation - takesq® at least in /i e/ context: The perceptual dominance of V-seg in /a/ context and of N-seg
the perception and the spectral analysis of the N-seg shouldjR€u/ context is confirmed by tests using isolated segments [5].



By contrast, the front unrounded context stands apart. In tiiese two sources. We tested the 3 architectures (see Fig. 3). A
context, like in /u/ context, the N-seg seems to mask V-segore detailed taxonomy of fusion models can be found in [2].
information. The competition model would predict a salient N-

seg. However, the isolated N-seg from /i/ context perform N-seg ~al
poorly for plce of articulation perception, unlike N-seg from 1 —pl2 —»
/ul context (see Fig. 2): it is not as salient as expected for V-seg ad
dominant segment. Early Fusion  1: coder
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Figure 2: Stop identification from isolated N-seg, from [5] for g

2 test conditions: unknown vowel (light) and pre-announced Late Fusion
vocalic context (dark).

50

Figure 3: The 3 models we tested to fusion data from N-seg and
V-seg. The coders are straight-forward feature extraction
The way out of this paradox is suggested by gating tests resiigorithms. The classifier is the only trainable part of the
reported in [6]. Adding one or more voiced periods after the Ny chitecture. We always use a bayesien classifier. Among

seg greatly reduced place of articulation confusions for /i/ a fferent implementations for the arbiter, we retained a simply
/el vocalic context. One should conclude that V-seg in /i . . '
robability multiplier.

context, while not informative by itself, is needed by humaH
perception to read the information contained in the N-seg .
o o The early fusion architecture (EF) uses a parameter set
2.3. Competition and cooperation in computed on a fixed length segment ignoring the underlying
perception nature (voiced or not). The fusion takes place in the feature
extraction process. Blumstein's integrated spectra is an example.

We identified 3 typical distributions for the place of articulation . . .
information in CV transitions: The direct fusion architecture (DF) uses parameters extracted

separately from N-seg and V-seg. Here the fusion take place in
* In/al context, V-seg is discriminant and N-seg is not. the training process. Smits et al. [3] use this architecture.

* In /u/ context, N-seg is far more discriminant then V- The late fusion architecture (LF) uses 2 classifiers and then
seg arbitrates between them. This is symbolic-level fusion. To our
knowledge, this architecture has not been tested for stop

« In /i/ context, N-seg has the information but it need identification.

the V-seg to show it off.

We can model /a/ and /u/ associated behaviar @mmpetiton 3-2. Segments coding

N- V- : ion fi h . .
b_etwge_n seg and /-S€g Ccues perception ocus on the ésearched the best coding for both segments independently.
discriminant part. In /i/ context, human perception needs borq

segments. This behavior should be modeled asoperation these.pnot .exp.er!ments, each parameter set is passegjthr
a canonical discriminant analysis (CDA). Feach segment, the
between segments cues.

set yielding the best stops identification score was retained.

3. AUTOMATIC IDENTIFICATION N-seg segmentis best coded by the energy of the release

TESTS spectrum computed in 10 frequency bands equally spaced on a

] ) ] Bark scale. The spectrum is computed using a 10 ms
The speech corpus is an extension of the one used in percepimmetric hamming windows starting at release (slightly

tests. We added another 7 native French male speakgghger then the minimum VOT) and is smoothed by a 20 order
asymmetric vocalic context and two conditions: stressed angc. pifferent frequency scales, number of bands and LPC
unstressed. These add up to 2208 CV syllables. orders were tested. Note that our release burst spectrum, being

. . unvoiced, differ from that computed by Blumstein [7].
3.1. Fusion architectures

. ) ) V-seg segments best coded by the F1 - F4 formant tracks,
Since both segments can cue place of articulation for stops, fiiich correspond to classic coding scheme for this segment. An
automatic recognizer must deal with the fusion of data frodutomatic tracking method is used. A 3 coefficient DCT model



is used to smooth the amplitude and the frequency of the lasticulation (see Fig. 5). Note the difference between vocalic
50ms of each formant track. Different track models and a globabntexts:

spectrogram coding of the same voiced period were tested.

Coding for the early fusion architectures needs a different
approach. We chose to code a fixed length segment, longer then
the average VOT, starting at the burst release. It is called the
50ms-seghereafter. It is best represented by a double discrete
cosines transform (DCT) coding of the LPC smoothed
spectrogram. This is essentially the coding method proposed by
[8]. We tested also versions of Lahiri metric [9] and integrated
average spectra as proposed by Blumstein [7].
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Figure 4: Vocalic context influence on the rates of place of °®
articulation identification: 5 architectures compared. Result
presented for 4 extreme vowels and averaged across 10 Fre
vowels. Training corpus has equilibrated distributions o0Z04
contexts.
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In back and front rounded context, there are 2
information-rich frequency ranges, a /t/ zone (where
/t/ spectra has statistically more energy then the /k/
spectra) and a /k/ zone.

In front unrounded context, only one range remain.
Moreover, it is a /k/ zone placed at typical /t/ zone
frequency.

Due to the great contrast in the /t/ zones, a N-seg based
classifier ignoring vocalic context will learn that /t/ spectra is
greater somewhere. So it will tend to identify /ki/ as /ti/.
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3.3. Errors analysis

Previous studies did not detailed the main sources of errors. \
paid special attention to the vowel effect on errors and t
architecture—related limitations. Figure 4 presents identificatio s 1
rates for 4 vocalic contexts and averaged across the 10 Frer_
vowels. 2 non-fusion and 3 fusion architectures are compare®

These results show that:

4.1.

Automatic tests confirmed perception patterns: V-
seg performs better in open context while N-seg
dominate the other contexts. Note that N-seg
salience for /il is as low as for /a/

The errors came mostly from the unrouded front
vocalic context, even for the best performers. Again,
we find that /i/ context is special.

Fusion increases identification level. The early
fusion is the best. Note that EF achieve its
superiority in contexts where N-seg is not directly
discriminantant.

4. BURST CHARACTERISTIC
FREQUENCY

Mutual information
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Figure 5: Normalized mutual information (NMI) between
release spectrum and place of articulation for /t/ vs. /k/ contrast.
NMI peaks show the most informative band in the spectrum. a)
/u o/ context, b)y e/ context and c)i/e/ context.

4.2. Automatic identification tests

One possible solution to avoid this confusion is to force
classifier to ignore /t/ zones and concentrates on /k/ zones. We
call "burst characteristic frequency" (BF) the NMI peak which
is the center of these variable frequency /k/ zones. BF can be
computed from the vocalic context (see Fig. 6). We code the
release spectrum with the energy of three 2-Bark bands around
BF. This 3 coefficients set drastically reduces /t/ versus /k/
confusions made by the 10 coefficients set coding the hole
spectrum (see Tab. 1). Meanwhile, it is not globally performant

In order to understand why French /ti/ versus French /kil is suéie to /p/ versus /t/ errors. Still, combining the 10 bands set and
a frequent error, we computed normalized mutual informatiofi€ BF-centered set yielded a recognition rate on a par with EF
(NMI) patterns between release burst spectra and the placeVdth far smaller parameter count (see Tab. 2).
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Figure 6 : BF frequency plotted against first four formantszooo_

position for 10 oral French vowels.

Training and testing condition 3-bands | 10-bands
same context 90.3% 92.7%
different context 80.3% 39.2%
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Figure 7: /ki/ syllable with stop-band filtered N-seg. This CV is

Table 1: /t/ vs. /k/ identification rates. 384 syllables. Note thgerceived as /ti/.

under tazard level (50%) rate for cross-context validation: the

release spectrum is heavily context dependent. The BF-centered

band is much less variable.
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5. DISCUSSION
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principal cue need a less effective one to become moge
effective: it is a cooperation model.

We claim that the competition model can not entirelyoaot
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contrast based one.
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