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ABSTRACT
In this paper we explore the use of lexical information
for language identification (LID). Our reference LID sys-
tem uses language-dependent acoustic phone models and
phone-based bigram language models. Foreach language,
lexical information is introduced by augmenting the phone
vocabulary with theN most frequent words in the training
data. Combined phone and word bigram models are used
to provide linguistic constraints during acoustic decoding.
Experiments were carried out on a 4-language telephone
speech corpus. Using lexical information achieves a rela-
tive error reduction of about 20% on spontaneous and read
speech compared to the referencephone-based system.
Identification rates of 92%, 96% and 99% are achieved
for spontaneous, read and task-specific speech segments re-
spectively, with prior speech detection.

1. INTRODUCTION

Many state-of-the-art language identification (LID) sys-
tems exploit phone-based acoustic and (or) phonotactic
scores [7]. Training generally consists of designing one
phone-based recognizer per language (i.e., there is no ex-
plicit use of lexical information). During test, these rec-
ognizers are run in parallel, and the one with the highest
likelihood is selected, with the language associated with
the model set identified [2].
Theoretically, if a large vocabulary continuous speech
recognition system (LVCSR) was substituted for the
phone-based system ineach language, better language
identification results could be achieved. This is because
LVCSR systems use higher level knowledge: words and
sequences of words rather than phonemes and phoneme
sequences. In practice this approach has not been widely
explored [4], since in addition to being computationally
expensive, it is difficult to use if only small amounts of
language-specific data are available.
The words in a language are not evenly distributed – the
most frequent words account for a large proportion of all
word occurrences. For large newspaper corpora in En-
glish (WSJ) and French (Le Monde), the most frequent 100
words account for about 40% of all word occurrences. For

Lexical Coverage (%) of N words
Language (M) 10 50 100 250 500 1K

English (2341) 27 49 60 72 82 91
French (2400) 26 54 64 76 84 91
German (3255) 22 44 57 68 77 86
Spanish (5008) 28 52 61 72 79 86

Table 1: Lexical coverage rates (%) of spontaneous training data in the
IDEAL corpus for theN most frequent words. For each language the
number of distinct wordsM in the spontaneous training data is also given.

task specific vocabularies (such as travel information tasks)
the lexical coverage for the 100 most frequent words is
about 70%. This property may be taken advantage of in
building a system for language identification.
In this contribution we address the following interrelated
questions:
� To what extent do lexical constraints improve LID?
� Is LID easier for task-specific domains than for more gen-
eral topics?
� Is LID more difficult with spontaneous speech than with
read or elicited speech?
In the next section we describe our new strategy combining
a phoneme-based models with lexical information from the
most frequent words. Section 3 describes speech corpus
and presents experimental results for different training and
test configurations. The experimental setup was designed
to give at least partial answers to all of the questions stated
above.

2. USE OF LEXICAL INFORMATION

The motivation for incorporating lexical information the
acoustic approach stems from the observation that rela-
tively high lexical coverages can be achieved using a rel-
atively limited number of words. Table 1 shows the lexical
coverage rates obtained for different values of theN most
frequent words in the spontaneous speech portion of the 4-
language IDEAL corpus [3]. The 10 most frequent words
account for about 25% of all word occurrences in the train-
ing data, and about 70% of the training data are covered
usingN = 250. These figures hold approximately for the
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Figure 1: Block diagram of the parallel language-dependentphone & N
most frequent word recognition approach to LID.

four languages studied, despite the differences in the total
number of distinct words in the transcriptions (M ).1.
The approach described here is an extension of the par-
allel phone recognition approach used in [2], [7], where
instead of modeling linguistic information only by phono-
tactic constraints, for each language theN most frequent
words are also taken into account.
LetL = fL1; L2; : : : ; LKg the set of languages to be iden-
tified. The approach based on language-dependent phone
recognition uses a bank ofK phone recognizers, with a
specific phone set foreach language. Acoustic models are
trained for each languagek and language model constraints
are provided by phone bigrams.2

In the proposed approach the acoustic models remain un-
changed, but each system vocabulary contains its language-
specific phones and theN most frequent words observed in
training data for the language. The orthographic transcrip-
tions of the training are transformed to replace all words not
in theN most frequent words by their phone transcriptions
(obtained by Viterbi alignment). The resulting transcripts,
consisting of sequences of phones and words are used to
estimate hybrid language models using standard estimation
techniques.
The system architecture is shown in Figure 1, where the
incoming test utterancex is decoded by theK language-
dependentphone & N most frequent word recognizers.
Some example system outputs are shown in Figure 2. In
the first example the system outputs mostly words. In the

1The significantly higher number for Spanish (M = 5008) is due to
the larger amount of spontaneous speech collected: for the same number
of responses, twice as much speech data was collected for the Spanish
language as compared to German, English or French.

2 In the parallel approach it is common to use sets of phonotactic bi-
gram models to rescore the parallel outputs [7], offering the advantage of
being able to identify languages for which only untranscribed training data
is available. This work does not use any subsequent phonotactic bigram
models.

Language #Calls #Male #Female #Hours

English 258 109 149 14.8
French 259 129 130 13.1
German 257 109 148 15.8
Spanish 253 114 139 17.9

Table 2: Summary of data under matched language/country conditions.

second sentence, the unknown word “girl” (followed by
“and”) is replaced with “garden” and theunknown word
“boys” is recognized phonemically. The third example is
recognized as a mix of words and phones.
Each of theK recognizers produces a log-likelihood``k
which is used to take the LID decision. In our present sys-
tem this is simply the maximum likelihood criterion.

3. LID EXPERIMENTS
Experiments have been carried out to assess the contribu-
tion of lexical information on 3s and 5s segments of the 4-
language telephone speech corpus IDEAL [3]. Automatic
language identification research using this corpus has been
reported in [1].

3.1. TheIDEAL telephone speech corpus
IDEAL is a large, four-language corpus (French, British En-
glish, German and Castillan Spanish) of telephone speech
for research in automatic language identification [3]. The
corpus is similar in style to the OGI multi-language cor-
pus [5], containing read and spontaneous speech for each
caller. The corpus contains data from over 250 native
speakers of each language calling from their home country
(matched language/country conditions), and an additional
50 calls per language from another country (crossed condi-
tions). Table 2 summarizes the matched data for the differ-
ent languages.
The callers, balanced for sex, age and dialect, were re-
cruited by a marketing survey company who distributed
calling designed to collect three types of data:
� Call information: general questions concerning the call
and caller, these data were not used in these experiments.
� Read & elicited speech: items containing pre-defined
texts to read and fixed prompts (“what time is it now?”);
� Spontaneous speech:a set of questions aimed at ob-
taining spontaneous speech (“speak about your home, your
dream vacations, your favorite music” etc.)
The read and elicited speech items in the caller scripts
were generated automatically from source files containing
several thousand different texts foreach item. These in-
clude texts extracted from newspapers, simple telephone
introductory phrases or information requests, travel infor-
mation queries, dates, times, credit card numbers, tele-
phone numbers, spoken and spelled common words and
proper names, digit strings, money amounts, and complete
names and addresses. The high proportion of items includ-
ingnumbersand dates motivated the LID test on these data



T: having towait uh for longperiods for thebus to comeas it’s late on it’s scheduleand so on
Hyp: I having to way to prefer shopping for the carpet and chips and they car etc and a n t

T: 3 children 1girl and 2boys
Hyp: 3 children 1 garden to b c I z

T: the last time I went to a museum was thesealife centre and we saw lots ofvarious fish in their natural surroundings
Hyp: f @ t W Y n to museum was to see my friends k l for lots of b R l u fish and then @ C r look for and I G k s

Figure 2: Some example output showing the partial hypotheses. The words in transcriptT that are shown in bold are not in the recognition lexicon.

(see below). Thespontaneousportion of the corpus con-
tains responses to a series of questions selected randomly
at record time from a set of about 200 questions. The ques-
tions were not written on the paper script, in order to pre-
vent callers from preparing their answers. The spontaneous
data accounts for about 15% of the corpus, not including si-
lences.

3.2. Experimental conditions
Specific test sets were selected so as to be able to compare
LID performance on spontaneous speech to read/elicited
speech. Two different sets of data were used for read and
elicited speech. The first set included all read and elicited
items (i.e. newspaper texts, travel information queries,
dates, numbers, addresses: : :). The second is a subset
of this data including only items related to numbers and
dates. The lexical information was included by adding
theN most frequent words in the respective subcorpa of
the training data: spontaneous speech transcripts, read &
elicited speech transcripts, and number & date transcripts.
Bigram language models were trained foreach test condi-
tion: spontaneous, read, numbers.
The same set of acoustic models were used for all exper-
iments. These models were trained on all of the training
data (spontaneous and read speech) from 200 calls per lan-
guage. 50 calls per language were reserved for test.
For the test condition (Tcondition), all utterances of thecon-
dition with a minimal duration (5s or 3s) were used. Only
the first part of the acoustic signal of each utterance was
used for the LID test. To investigate the extent to which
the LID results are influenced by non-speech acoustic seg-
ments, an additional series of tests were carried out using
prior speech detection, whereT 0

condition � Tcondition.
Speech detection was obtained by aligning the data with the
transcripts, simulating optimal speech/non-speech detec-
tion. After removing initial and final silence portions, the
T 0

condition test set contains the speech segments contain-
ing at least 5s of speech. In future work we will measure
the effect of using an automatic algorithm for speech/non-
speech detection (i.e. without using the transcriptions).

3.3. Spontaneous speech
TheN most frequent words and the hybrid language mod-
els are obtained exclusively from the spontaneous speech
portion of the training corpus. The test dataTspont (871 5s
segments) andT 0

spont (588 5s segments) also contain only
spontaneous speech. The lexical coverage of the sponta-

Lexical coverage %LID error
Train Test Tspont T 0

spont

N #of 5s segments 871 588
0 - - 17.0 11.6

100 60.3 59.4 13.8 9.2
250 72.0 70.4 13.4 8.3
500 80.6 78.3 12.4 8.0

N # of 3s segments 1242 840
0 - - 21.0 16.2

100 60.3 59.4 17.9 13.0
250 72.0 70.4 16.9 11.8
500 80.6 78.3 15.9 11.3

Table 3: LID approach combining phonemes andN most frequent words
for LM. Language identification error rates on 5s segments (top) and 3s
segments (bottom) ofspontaneousspeech for the 4-language task as a
function ofN . Results are given without speech detectionTspont and
with prior speech detectionT 0

spont.

neous training data were shown to be somewhat compa-
rable for different languages (see Table 1). In Table 3 the
lexical coverage rates, averaged across languages, are given
for both training and test data. The difference in coverage
between training and test is small for all values ofN , but
increases withN .
Table 3 shows the language identification error rates for dif-
ferent values ofN on Tspont andT 0

spont. The LID error
rates forN = 0 correspond to the phone-only approach.
Incorporating lexical knowledge by including only a rela-
tively small number (N = 100) of frequent words is seen
to improve the relative performance by 15 to 20%. The
performance improvement is larger on the set of segments
with speech detectionT 0.
Including more words (N = 250; 500) results in further
performance gains. A relative error reduction of over 10%
is observed by increasingN from 100 to 500. Comparing
Tspont andT 0

spont error rates for the 5s segments, speech
detection results in a relative gain of more than 30% for all
values ofN . For the 3s segments, the difference in perfor-
mance is over 20%. The 3s results with speech detection
are seen to be better than the 5s results without. These
differences highlight the importance of properly handling
non-speech segments in optimizing LID systems.

3.4. Read and elicited speech
We investigated the performance on the read and elicited
speech parts of the IDEAL corpus in order to measure the



Lexical coverage %LID error
N Train Test Tread T 0

read

0 - - 7.9 5.4
100 72.3 72.0 5.7 4.8
350 85.7 85.1 5.0 4.2
500 88.3 87.5 5.0 4.0

Table 4: Language identification error rates on 5s segments ofread and
elicited speech for the 4-language task as a function ofN . Results are
without (Tread) and with prior speech detection (T 0

read). Tread: 1409
5s segments,T 0

read: 644 5s segments.

Lexical coverage %LID error
N Train Test Tnumbers T 0

numbers

0 - - 3.6 1.9
100 97.1 96.9 3.0 0.6
250 99.8 99.5 2.0 0.3

Table 5: Language identification error rates on 5s segments of read and
elicited speech concerning thenumbers domain for the 4-language task
as a function ofN . Results are given for 5s segments onTnumbers (no
prior speech detection, #of 5s segments: 642) and onT 0

numbers (prior
speech detection, #of 5s segments: 321).

impact of a more carefully produced speech on LID rates.
Read speech is known to be. on the average, more clearly
articulated than spontaneous speech, with a lower rate of
speaker produced noises such as breath and hesitations.
Results are given in Table 4, where theTread test set is
comprised of 1409 5s speech segments and theT 0

read test
set contains about 644 5s segments of speech.
The use of lexical knowledge reduces the LID error by 28%
(N = 100) for the (Tread) test set without no prior speech
detection. Using more words (N = 350) reduces the LID
error by an additional 10%. However, despite the slightly
higher lexical coverage with 500 words, the LID perfor-
mance is not improved. Similar improvements were ob-
served with 3s segments of speech.
A similar observation can be made for the (T 0

read) test set
of 5s speech segments after speech detection. The LID
error rate achieved by the acoustic phone-based approach
(N = 0) is 5.4% and can be reduced to 4.3% by incorporat-
ing lexical knowledge about the 500 most frequent words.
This corresponds to a 20% relative error reduction.

3.5. Task-oriented read and elicited speech
Here we consider a subcorpus of the read and elicited
speech part of the IDEAL corpus to measure the impact of
using a limited, task-specific vocabulary. The subcorpus
consists of items containing mostly numbers: dates, times,
credit card and telephone numbers, digit strings and money
amounts. As can be seen in Table 5 very high lexical cov-
erages can obtained on this type of data: 100 words cover
97% of all word occurrences, and 250 words covers over
99%.
Tnumbers is a test set composed of 642 5s segments, and the
T 0

numbers test subset contains 321 5s segments of speech.

The LID errors rates are significantly lower than those ob-
tained for more general tasks (compare this table with Ta-
bles 3 and 4. With prior speech detection, the LID rate is
close to 100% on the 5s segments (T 0

numbers). Significant
gains are still observed by increasingN , with the LID error
for N = 250 being half that ofN = 100.
These results clearly show the impact of linguistic con-
tent on LID rates. Even for the phone-based approach,
the task-specific phone bigram, used during the acoustic
Viterbi search, can capture some of this information.

4. CONCLUSIONS & PERSPECTIVES
In this paper we have experimented with an alterna-
tive approach for automatic language identification which
makes combined use of phonemic and lexical information.
This approach is an extension of the parallel language-
dependent phone-based acoustic decoders, which are aug-
mented by theN most frequent words of the given lan-
guage. Incorporating lexical information yields a relative
error reduction of about 15-30% depending upon the con-
dition. For a given condition, LID rates were shown to in-
crease with increasing lexical coverage. Since lexical cov-
erages are typically higher in specific domains, better LID
can be expected. The LID error for spontaneous speech
(13.4%) is more than twice as high as for read speech
(5.7%) given comparable lexical coverages of about 70%.
A substantial reduction in error rate was obtained by re-
moving initial and final non-speech portions of the sig-
nal. These non-speech events represent a noise source for
the LID process, which is not sufficiently accounted for
language-independent acoustic silence and noise models.
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