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1. ABSTRACT

When shifting by a few samples a speech signal, we have
observed signi�cant variations of the feature vectors produced
by the acoustic front-end. Furthermore, these utterances when
decoded with a continuous speech recognition system leads to
dramatically di�erent word error rates.

This paper analyzes the phenomena and illustrates the well
known result that classical acoustic front end processors includ-
ing spectrum and cepstra based techniques su�er from time-
shift. After describing the e�ect of sample sized shifts on the
spectral estimates of the signal, we propose several techniques
which take advantage of shift variations to multiply the amount
of training that speech utterances can provide. Eventually, we
illustrate how it is possible to slightly modify the acoustic front-
end to render the recognizer invariant to small shifts.

2. INTRODUCTION

2.1. Overview

Speech recognition systems present signi�cant accuracy vari-
ations when decoding speech utterances. Numerous phenomena
induce these variations: intra-speaker changes, inter-speaker
di�erences, speaking style, dialect, accent, word rate, formal-
ity or casualty of speech, conversational (dialog) versus talk,
prepared versus spontaneous, channel mismatch , microphone
mismatch , background noise mismatch, reverberation etc. Tra-
ditionally, acoustic robustness against these e�ects is achieved
either by training over a large set of utterances representative
of all the variations that the decoder is expected to meet. Al-
ternatively, a general purpose decoder can be adapted to spe-
ci�c conditions by adaptation. This adaptation can be done in
supervised or unsupervised mode, in advance or in real time.
Eventually, special acoustic features, robust to speci�c environ-
ments, can be developed to replace a classical front-end.

In any case, it is always important to reduce the impact of
any acoustic variations on the recognizer accuracy. It is always
useful to use as much data as possible to train a system and to
learn the e�ect of these variations.

In this paper, we use IBM speech recognition engine tech-
nology, namely continuous large vocabulary speech recognition
stack decoder with context-based decision tree lefemes modeled
with continuous HMMs and trigram language models . This
engine was used in the classical ARPA evaluations. The reader
is invited to consult [3, 4, 5] for more details. It is also the base
technology of IBM telephony and desktop ViaVoice products.
The observations and algorithms that we present in this paper
are valid over desktop, telephony and broadcast data.

Although the same behavior is observed with other set of
FFT-derived acoustic features [6], for the purpose of this paper,

we are using MFFC, with C0, delta and delta-delta. These
features are computed over frames of 25 ms shifted from frame
to frame by 10ms.

Nothing is more arbitrary that the initial synchronization of
the analog acoustic waveform and the �rst frame of the front-
end. However, it is expected that it should only slightly, if at
all, impact the accuracy of the recognizer. However, we observe
signi�cant modi�cation of the spectral estimates and MFCC
produced by the front-end which in turn result into variations
of up to 10% of the word error rate on the same database!

Such variations are appreciable enough to be studied more
carefully. Obviously, the speech recognition engine should be
more robust against such a small e�ect. However, with unmod-
i�ed classical systems, the amplitude of the WER variations
indicates that time shifts can provide a way to extractmore non-
redundant training or adaptation data out of a regular speech
database.

Since each feature vector is derived from frames which are
shifted by 10 ms, an additional time shift by T will perturb
the acoustic feature vector by T1 = T mod 10ms plus a system
delay of the quotient, T2. Therefore, we limit our analysis to
shifts, T1 smaller than 10ms.

2.2. Approaches

Approaches can now be considered to reduce the e�ect of
time shifts on the acoustic features and their impact on the
decoded accuracy.

New sets of acoustic features are introduced to directly re-
move the time-shift variability. These features are obtained by
multiplexing shifted versions of the original signal. Intuitively,
it amounts to compute multiple sets of acoustic feature vectors
and recombine them before feeding them to the recognition en-
gine. It amounts to low-pass �ltering the output of the spectral
estimator (FFT), before cepstral transform. Because the ex-
tension is trivial, we will present a simple average of shifted
MFCC. Although, it would be preferable to use this new front-
end to train the recognizer, a conventional recognizer could be
used with the new front-end introduced only during decoding.
Such front-endmodi�cation increases the complexity and mem-
ory/CPU requirement of the engine at training, if performed,
as well as at testing.

Since the �rst approach modi�es the speech recognition en-
gine at decoding time, and preferably also during training or
adaptation, we propose a second method of altering the train-
ing data to build time-shift invariant acoustic models, with a
conventional acoustic front end. Only the training phase is to
modi�ed with respect to a conventional system. At the dif-
ference of the �rst method, we do not need to introduce any
change in the speech recognition engine and its complexity or



memory/CPU requirements.

Furthermore, the proposed approach increases dramatically
the amount of available training data resulting from a conven-
tional data collection and scripting. It results in improvement
of the error rate variability on conventional recognition tasks,
using a conventional engine with the shift-invariant acoustic
models.

Results will be presented to illustrate the improvements of
simple implementations of the two approaches.

Eventually, we should mention alternate features like the
wavelet-based synchrosqueezed cepstra which are inherently
closer to time-shift invariance [7].

2.3. Problem

In our recent speech recognition experiments it has been no-
ticed that shifting speech signal by one time sample changes the
accuracy of the recognizer by unexpected amounts. To quan-
tify this phenomenonwe considered a simple experiment of run-
ning the recognizer for two almost identical segments of speech
signals | one obtained from the other by dropping the �rst
sample. The test signal in our experiment reported here was
the �rst sentence from the test set of the Wall-Street journal
database [1]. Similar anomalies were noticed elsewhere as well.
We recorded the respective detailed match [8] values as a mea-
sure recognition accuracy in each of the two cases. The system
was trained on 35 hours of wall-street-journal standard data
set available from DARPA [1]. The result of this experiment is
tabulated in Table 1. It is clear that for certain lexemes, a sig-
ni�cant deviation occurs. A correspondingly obvious deviation
was also observed in the word recogntion accuracy.

Table 1: Table showing the % variation in detail match as
a measure of recognition accuracy due to shift of unit time
sample. Columns corresponding to DM(1) and DM(0) in-
dicate shifted and unshifted values respectively.

Lexeme DM(0) DM(1) %change

.(TRM) 6.92 6.93 0.26
RICHARD 3.97 4.18 5.36
SARAZEN 0.49 0.45 9.69

SIL -1.30 -1.29 0.85
CHIEF 3.41 3.38 0.88

FINANCIAL 2.79 2.95 5.59
OFFICER 4.63 3.85 20.00

OF 0.02 0.09 238.00
NEWS 2.69 2.67 0.71

CORPORATION 8.53 8.53 0.00
SAID 1.71 1.68 2.08
THE 0.32 0.35 7.97

COMPANY 4.67 4.95 5.90
BELIEVES 3.02 2.99 1.17

A 0.17 0.08 53.09
DOWNGRADING 7.30 7.26 0.55

ISN'T 3.18 3.10 2.54
IN 0.89 0.96 7.59

ORDER 2.42 2.49 2.86
SIL 10.61 10.70 0.85

It is clear that this phenomenon must result from deviations
in the cepstra or, equivalently, in the logarithms of mel-binned
�t's in the front-end of the recognizer. In an attempt to explain
this unwanted e�ect, we conjectured a number of di�erent rea-
sons. These are as follows: (1) The pre-emphasis �lter that
preceeds the computation of �t in the front-end. For all practi-
cal purposes, this approximates a di�erenttiator (2) unwieldly
values values of logx for small x, because logx! �1 as x! 0
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Figure 1: E�ect of preemphasis �lter on the logarithm of
binned FFT. x-axis corresponds to frame number; y-axis
corresponds to the 24 binned log FFT values

(3) The choice of Hamming windows vs. hanning windows was
a potential reason, and lastly (4) the size of the 25 ms window
(at a frame rate of 10ms) was a suspect as well. We note that
there has been signi�cant debate on the proper choice of the
latter in the speech literature.

To examine the e�ect of pre-emphasis �lter on the phenome-
non of interest, we computed the logarithms of mel-binned �t's
with the pre-emphasis �lter turned on and then later with the
pre-emphasis �lter turned o�. The percentage deviation mea-
sured as: ��� (logFFT)0 � (logFFT)1

(logFFT)0

���
is plotted in �gure 1. To be speci�c, the plot corresponds to
the �rst sentence of the wall-street-journal test set considered
in Table 2.3. The dependence of the magnitude spectrum of
windowed fourier transform of a impulse train on the position
of the window placement is demonstrated in Figure 2 in the
extreme (admittedly arti�cial) situation when the window size
is nearly the same as the separation between the impulses. The
1st, 3rd and 5th subplot show the impulse train with the win-
dow placement, whereas 2nd, 4th and 6th subplot shows the
correponding discrete Fourier transforms. Notice that the mag-
nitude spectrum can vary from a 
at spectrum to near sinusoid.
This demonstrates the importance of choosing the proper win-
dow size when dealing with signals with rapid variation as in
stops and plosives. As a remedy to the problems arising from
the fact that logx ! �1 as x ! 0, we use the following reg-

ularized logarithm. This proves to be an approximation to the
logarithmic function for small values of x, while coinciding with
logx for large x. Let

f(x) =

� �
( x
�
)n � 1

�
+ log� for � > x

logx for � � x
(1)

Then it is easy to see that f(�) = log� and as n ! 1 we
have for all values of x and � that f(x) ! logx. The integer
parameter n determines the rapidity at which the function f(x)
drops as x approaches 0, whereas � is the knee, to be appro-
priately chosen, beyond which f(x) coincides with logx. We
choose � depending on the dynamic range of the mel-binned
FFT. In particular, the values n = 2 or n = 4 appear to be
appropriate for our experiments, and we choose � = xmax=20,
where xmax is the largest value of the magnitude mel-binned
frequency spectrum.

We shall explore the e�ect of using hanning vs. hamming
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Figure 2: E�ect of window size on the FFT

window by computing detail match for all of the 40 sentences
of the wall-street -journal test set [1], and subsequently by plot-
ting the histogram of the di�erences of the detail match values
between the shifted and unshifted cases. Ideally, this histogram
should be a delta function, and any departure from it should
indicate the sensitivity of the recognizer due to shift in time
samples. In other words, a histogram concentrated near the
origin corresponds to less sentivity due to unit shifts of sam-
ples, whereas a more spread out histogram correponds to (less
desirable) higher sentivity. Figure 3, 4 and 5 respectively show
the histograms for using hammingwindow with pure logarithm,
hanning window with pure logarithmand hanning window with
the regularized logarithm (1) with n = 2 in equation (1). The
pre-emphasis �lter was turned o� for all these experiments.
Clearly, the progression from Figure (3) to Figure (4) and then
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Figure 3: Histogram showing jDM0 � DM1j; hamming
window and pure logarithm

to Figure (5) indicates histograms increasingly concentrated to-
wards the origin, and thus improved robustness to unit shifts in
time sample. These improvements are accordingly re
ected in
the word error rate in recognition.

It behooves us to explain this experimentally observed phe-
nomenon. It might be (erroneously) argued that mel-binning
avoids the problem of small values of sampled frequency spec-
tra near the zero frequency (i.e., the problem arising due to di-
vergence of logarithm of zero) by averging the spectra out over
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Figure 4: Histogram showing jDM0�DM1j with hanning
window
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Figure 5: Histogram showing jDM0�DM1j with hanning
and modi�ed log window

the lowermost mel frequency bin. However, recall that the mel-
bins are of increasing size in a logarithmic scale, thus, resulting
in small low frequency mel-bins and large high frequency mel-
bins. This makes the low frequency samples of mel-binned spec-
tra look even smaller relative to the high frequency samples of
mel-binned spectra, thus accentuating the problem arising from
divergence of logarithm of small numbers. This necessitates the
use of (1) instead of the pure logarithm.

The di�erence in behaviour from the use of hanning as op-
posed to hamming window may be attributed to the fact that
hamming window is a raised cosine, whereas hanning is only a
cosine window. A raised cosine is a cosine with a square pulse
added to it. It is well known [2] that the latter has wider side-
lobes in its spectrum. Another way of viewing its drawbacks
is to consider sudden changes in signal values as in stops or
plosives. Onset of such a sound at, say, the trailing edge of
a window may result in signi�cant di�erences from the use of
hanning or hamming window, because the former, being a pure
cosine, has the e�ect of zeroing out the large changes in signal
values, and windowed signal is, thus, relatively less sensitive to
sudden variations in signal amplitude near the window edge.



3. SHIFT INVARIANT METHODS

We have explored three methods to overcome the e�ect of
this time-shift problem in terms of speech recognition. These
methods are

Method 1 Averaging FFT's of shifted windows: Here the
many shifted replica's are created from the input pcm
stream and �t's computed on each. The magnitude spec-
trum is then averaged to provide a more robust estimate
of the spectrum.

Method 2 Training on shifted data: Here the training data
to the recognizer is shifted and models are built on many
shifted replicas. This allows the front-end of the speech
recognizer to remain the same during training and testing.

Method 3 Shift invariant features: Here the acoustic features
are themselves chosen to be independent of time shift, for
example the wavelet features described in a companion pa-
per [7].

3.1. Method 1

The data we used for this experiment consisted of 2017 ut-
terances of yellow pages categories collected over the telephone.
The testing vocabulary contains 1857 words and 2473 phonetic
baseforms for the words. The data was collected from a variety
of speakers calling from across North America with a wide vari-
ety of handsets. Shifted replicas of this database with 1,2,3,4,5
ms shifts were created. The speech recognition system used
in this experiment was trained on a corpus containing roughly
300K sentences from Macrophone, Phonebook and an internal
database of digits and other command vocabularies.

Though many methods can be explored for creating averaged
�t spectra of the same data, we chose to create shifted windows
and average the resulting normally derived �t magnitude spec-
trum with that of the shifted data. It is important to note that
the pre-emphasis and windowing of the data must also be done
on the shifted window. The recognition results are presented in
the following table.

Shift Base 2xFFT 3xFFT
0 3.70 3.56 3.65
1 3.47 3.40 3.42
2 3.42 3.74 3.35
3 3.47 3.49 3.53
4 3.80 3.51 3.53
Avg 3.57 3.54 3.49
Var 0.028 0.013 0.013

Here 2xFFT refers to computing 2 �ts, one with the normally
presented data and one with a shift of 2.5 ms. 3xFFT refers to
using shifts of 1.8 and 3.6 ms. The variance clearly shows that
the technique seems to be reducing the variance though because
the error rate itself is quite small, the variance is also small.

3.2. Method 2

The training method o�ers the distinct advantage of cpu re-
duction during testing over the previous method. During the
training phase, the speech data is shifted by 1,2,4,5 ms in this
experiment thus producing 5x the amount of speech training
material. For this test, a telephony names database was chosen
with 7K utterances for training, and with 643 utterances for
test. The vocabulary consists of 20K names.

Shift Base Base+Shifted
0 24.55 19.36
1 19.51 19.44
2 20.37 19.05
3 20.13 20.13
4 21.76 21.30
Avg 21.26 19.85
Var 4.05 0.81

Here the base+shifted system achieves on average an im-
provement of 6:6% over the base system. This data clearly
shows the reduction in variance of the base+shifted system.

4. CONCLUSION

Time-shift e�ect on the acoustic features and the recognition
accuracywas a striking discovery for us. Even if well established
from a signal processing point of view, the impact of small shift
on recognition accuracy is widely unknown or ignored among
developers of speech recognition systems. We have shown that it
is possible to reduce this e�ect with appropriate acoustic front-
ends. On the other hand, this e�ect can be taken advantage of
to increase the amount of exploitable information provided by
a speech database used for training or adaptation of the speech
recognition engine.
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