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Abstract

Speech production models, coding methods as well as text
to speech technology often lead to the introduction of mod-

ulation models to represent speech signals with primary com-
ponents which are amplitude-and-phase-modulated sine func-

tions. Parallelisms between properties of the wavelet trans-
form of primary components and algorithmic representationsof
speech signals derived from auditory nerve models like the EIH

lead to the introduction of synchrosqueezingmeasures. On the
other hand, in automatic speech (and speaker) recognition,

cepstral feature have imposed themselves quasi-universally as
acoustic characteristic of speech utterances.

This paper analyses cepstral representation in the context of

the synchrosqueezed representation - wastrum. It discusses en-

ergy accumulation derived wastra as opposed to classicalMEL

and LPC derived cepstra. In the former method the primary

components and formants play a primary role. Recognition re-

sults are presented on the Wall Street Journal database using

IBM continuous decoder.

1 Introduction

A new method for processing speech signals that uses
the wavelet transform as a fundamental tool has recently
been introduced in [4, 15, 16, 17, 12]. While the pri-
mary emphasis of the initial study reported in these pa-
pers had been in speaker identi�cation, in the present
work we prepare the extension of the same methodology
with special attention to automatic recognition of con-
tinuous speech. The underlying method essentially in-
volves 'treating' the wavelet transform of the speech signal
in a very speci�c way, which is called synchrosqueezing.
This method of processing includes physiologically moti-
vated auditory nerve models, the ensemble interval his-
togram (EIH) model, and the so called AM-FM modula-
tion model of speech production, but now all synthesized
together within the more concrete framework of wavelet
transform.

2 Synchrosqueezed representa-

tions

Two key steps are involved in the method. The �rst is
the computation of the wavelet transform [3, 24], and the
second is the the process of synchrosqueezing, which is ne-
cessitated by the somewhat de-focussed character of the
wavelet transform of speech signals in the time-frequency

plane. The wavelet transform is implemented with a
quasi-continuous wavelet transform algorithm [13, 18].
While one can think of using the wavelet transform
directly for recognition purposes, the synchrosqueezed
wavelet transform, among other things, provides us with
an alternative to the traditional spectrogram. The latter
can also be used for recognition, after further processing
via more conventional means such as the computation of
the (wavelet based) cepstra - the wastrum [16].

Figure 1 compares the time-frequency representation ob-
tain by wavelet-based synchrosqueezing and FFT spec-
trograms for a segment of speech from the Wall-Street-
Journal data base. It is apparent that besides the role
of the window sizes, the synchrosqueezed approach ex-
tracts coherent structures within the signal, while the
FFT method represent the harmonics independently of
the mutual interferences. For this reason, primary com-

ponents [15] and formants can be e�ciently and robustly
tracked.

3 Auditory nerve representa-

tions

Detailed descriptions of the human peripheral auditory
system can be found in [22, 8, 6, 2, 10, 1, 11]. The EIH
representation results from an attempt to exploit the in-
synchrony phenomena observed in neuron �ring patterns
which contain all the information processed by the higher
auditory system stages1. In general, auditory nerve rep-
resentations can be modeled as �lter banks followed by a
dominant frequency extractor. The latter is used to accu-
mulate information from the di�erent subbands along the
frequency axis at a given instant of time. The wavelet-
based synchrosqueezed representationnaturally formalizes
these models. The cochlear �lter bank is approximated
by the QCWT [18] and the second stage is obtained with
the time-derivative of the phase of the wavelet transform
as the dominat frequency estimator.2

1Similar models have been proposed earlier on: the
instantaneous-frequency distribution (IFD) [7] and the in-
synchrony bands spectrum (SBS) [9].

2The wavelet transform is complex is this context. The
generating analysis wavelet is a Morlet wavelet [13].
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(a)

(b)

Figure 1: Time-frequency plane for Richard Sarazen....

(a) presents the FFT spectrogram with shift of 10 ms

and Hamming windows of 25 ms. (b) illustrates the

corresponding synchrosqueezed plane obtained with the

method cited in the text.

4 Cepstrum and ASR

Cepstral parameters are, at present, widley used for e�-
cient speech and speaker recognition. Basic details and
justi�cations can be found in [5, 8, 22, 21]. Originally in-
troduced to separate the pitch contribution from the rest
of the vocal cord and vocal tract spectrum [20], the cep-
strum has the additional advantage of approximating the
Karhunen-Lo�eve transform of speech signal. This prop-
erty is highly desirable for recognition and classi�cation
[14]. Furthermore, as discussed in [16, 12], the cepstrum
can be seen as explicit functions of the formants and other
primary components of the modulation model. Two main
classes of cepstrum extraction have been intensively used:

- LPC-derived cepstrum.

- FFT cepstrum.

In ASR the second approach has become dominant usu-
ally with Mel-binning. Figure 2 compares LPC derived

ceptra to Mel cepstra for the same segnent of speech as
used in Figure 1.

(a)

(b)

Figure 2: The sentence is Richard Sarazen.... (a) illus-

trates the LPC-derived cepstrum. (b) presents the corre-

sponding Mel cepstrum.

5 Wavelet-derived cepstra and

wastra

The wavelet transform can be used in di�erent ways to
extract cepstral features.

5.1 Energy accumulation-derived cep-

stra

- Wavelet binning:

Mel frequency binning of the pseudo-frequency and
amplitude estimated from the raw wavelet trans-
formed and resulting cepstra are used as features for
recognition.

- Energy binning in synchrosqueezed plane:

Same as the above, but now instead of using the es-
timates from raw wavelet transform, we use the data
from the synchrosqueezed time-frequency plane.
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Figure 3: The sentence is Richard Sarazen.... It illus-

trates the resulting MEL energy binning wastrum.

5.2 Time-frequency derived cepstra

(wastra)

The wastra (Wavelet based Cepstrum, for short) is in-
troduced in [12, 16] as the cepstral feature obtained by
applying Schroeder formula [23] on generalized poles ob-
tained by tracking the formants or primary components in
the synchrosqueezed plane. It may be remarked that the
improved robustness to noise of synchrosqueezed wavelet
transform for speaker identi�cation has been reported in
[15, 16, 4]. Another outcome of the new technique is that
the synchrosqueezed wavelet transform is more amenable
to tracking of formants or, more generally, the compo-
nents of the speech signal. Di�erent methods can be envi-
sioned for tracking of the components. In [16, 19], a MLE

is described to track formants and primary components.
The algorithm is extremely robust but time-consuming.

Alternatively, proposed simpler and computationally
tractable schemes, which has the 
avor of carrying out
(K-means) clustering of the synchrosqueezed spectrum
dynamically in time can also be proposed.

- K-means Wastrum

The components are dynamically tracked via
a K-means clustering algorithm from the syn-
chrosqueezed plane. The amplitude, frequency and
bandwidth of each of the components are, thus, ex-
tracted. The cepstrum generated from this informa-
tion alone is referred to as the K-mean Wastrum.
Figure 4 shows the resulting center frequencies and
bandwidths and the resulting cepstrum.

- Formant based wastrum

The K-mean clustering is post processed to limit the
set of primary components to formants. Formants
are interpolated in unvoiced regions and the contri-
bution of unvoiced turbulant part of the spectrum
are added. This method requires adequate formant
tracking. The resulting robust formant extraction
has numbers of applications in speech processing and
analysis.

(a)

(b)

Figure 4: The sentence is Richard Sarazen.... (a) il-

lustrates the components extracted by the K-mean ap-

proach. (b) presents the resulting K-mean wastrum.

6 Speech recognition experi-

ment

To demonstrate the e�cacy of the wavelet based syn-
chrosqeezed technique in automatic recognition of speech
we consider 20 hours of read speech sampled at the rate of
16 Khz from the wall-street-journal database. We com-
puted the energy binning syncrhrosqeezed wavelet cep-
strum (described in Section 5.1) corresponding to a frame
rate of 10 ms and a frame size of 25 ms. The cepstrum
was then used for decosing the 40 test sentences from the
wall-street-journal database. To test the performance of
the algorithm in presence of noise, we mixed the clean
test signal with cafeteria noise a noise levels from very
noisy (10db SNR) to relatively clean (60 db SNR). The
results are tabulated in Table 6. The drop of recognition
rate with increase in noise level is also diagramatically
shown in Figure 5. q Note that training was performed on
clean uncorrupted signal for the purpose of these experi-
ments. An obvious way to further improve these results is
to train on noise corrupted training data at an appropri-
ate SNR level. Further tuning of the parameters such as
the window size and frame rate appropriate for this spe-
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Table 1: Word Error rate (WER) as a function of

SNR

WER 10 12.5 15 20

SNR 57.04 41.99 27.7 18.2

WER 25 35 40 60

SNR 12.6 10.84 10.43 10.08
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Figure 5: Word recognition error plotted against SNR.

Training on clean WSJ database. Test data was contam-

inated with cafeteria noise.

ci�c front end processing are also necessary for improved
performance. In our experiments these parameters were
chosen to be the same as the best known values for FFT
based cepstra. In view of these, the present study can
only be considered to be preliminary. Since these prelmi-
nary results reported in Table 6 and Figure 5, seem to
be encouraging, further work is warranted for drawing
de�nitive conclusions on the robustness of wavelet based
synchrosqeezed cepstrum.
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