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characteristic encoding in prosodic parameters—something
ABSTRACT often illustrated by perceptually motivated experiments (e.g.,

_ _ [7]), but not normally quantified adequately.
This paper describes a methodology, and the results stemming

from it, for analysing the dynamic encoding of speaker identityhis paper describes a methodology employing the well-known
and dialect in prosodic parameters. A method based d&ynamic Time Warping algorithm to measure both the local and
employing properties of the well known Dynamic Time Warpinglobal temporal differences between two acoustic parameter
(DTW) algorithm’s path of best match allows the separation a@ontours. Whereas the DTW distance computes a single, scalar
purely dynamic from static properties of acoustic parameters aaderage difference between two contours Wep path the
hence their evaluation as to dynamic encoding of speakealculated temporal path of best match captures micro and
characteristics. macro temporal differences between the two contours.

Nineteen adult speakers of Australian English were recordé&doperties of the warp path, rather than the DTW distance, were
uttering a set of four sentences on five separate occasions oveisad to measure the dynamic encoding of speaker identity and
period of at least one week. The prosodic parametgrshbrt-  dialect in the acoustic parameters.

time energy, zero crossing rate and voicing were extracted for all

data and analysed as to their dynamic encoding of speaker 2. SPEECH DATA

identity and dialect. Discriminate analysis (for speaker identity)

and correlation analysis (for speaker dialect) analysis showéddatabase of nineteen (19) adult speakers (12 male and 7
higher dynamic encoding of identity (75%) and dialect (0.58female) of Australian English was recorded. The speakers
than static encoding (55% and 0.45 respectively). Normalisatidtitered a set of four (4) sentences on no less than five (5)
of all parameters into the range 0—1 reduced discriminate afgcasions each, over a period of not let less than one week.

correlation scores to 70% and 0.54 respectively. Table 1 lists the four sentences employed.

Contrasting the warp path parameters with the more

conventionally employed DTW distance showed that the warp Text

path parameters better measured speaker identity (72% versus “We were away a year ago.”

54%) and speaker dialect (0.56 versus 0.31) encoding. “I cannot remember it.”

Individual analysis of the prosodic parameters shows a far “How do you know?

higher encoding of identity and dialect ig, Fhough all four “We are firm.”

parameters encode dialect and identity. Table 1: Sentences employed in the study and recorded by
nineteen adult speakers of Australian English on no less than

1. INTRODUCTION five separate occasions each.

One of the well recognised divisions in the form of speaker
characteristic encoding in utterances is that between static (tiraikhough clearly a simplification, the dialects of Australian
invariant) and dynamic (time varying) [4]. English, as described in [2] were mapped onto a linear

numerical scale. A linguist listened to all utterances and

Whlll(ehmar;y refe:rcthet_rs have potlnlteld olut thISd.dIVISIO(I;, rr?o 1ésigned each speaker a dialect score ranging from zero (for
work has targeted stalic, segmental level encoding and Chi€gyy ateq dialect), through the dialect spectrum continuum to
that of speaker identity. One of the reasons for this lack n (for broad dialect) [2]

attention to dynamic, suprasegmental (prosodic) encoding is the

difficulty in measuring, quantifying, and meaningfullyg_l. Parameter Extraction

contrasting both the dynamic parameters and other speaker

characteristics. Speaker utterances were recorded in a quiet environment. The

With a methodology that allows the separation of the interr_ecordlngs were then low-pass filtered at 7.6kHz before 12-bit

woven dynamic and static encoding in any acoustic arametegﬂamisation at a sampling rate of 16kHz. The recordings were
y 9 y P hern hand-segmented to detect sentence start and end-points.

becomes possible to evaluate the degree and form of speake



For each sentence four prosodic parameters were extracted witimsitions,which comprised four separate diagoestursions,
25ms frames as follows: the longest being of length three (in the middle of the path).

« Energy — Log Mean Squared Amplitude.

e Zero Crossing Rate Time
» Fundamental Frequency jF extracted using a =
time domain parallel pitch detector with a 25ms = ]
frame, and a 10ms frame shift. Unvoiced frames 2r horizontal
were eliminated 2 (.
A
e« Voicing - Voiced/Unvoiced values were 3 I
extracted for a frame size of 25ms, with a 10ms '; I
frame shift based on the output of the pitch Z '
tracker. Voiced frames were assigned the value 3 :
1 and unvoiced frames assigned the value O, 2 |
creating a square-wave representation. |
Derived acoustic parameter series were post-processed with a >:
median-5, followed by a mean-3 filter [6] in order to eliminate I
spurious values. excgursions
3. METHODOLOGY
In order to both quantify the temporal variability of acoustic | | | | | | | | .
parameter values. e_md also_ allow meaningful evaluation of Acoustic Reference Vector  Time
speaker characteristic encoding a number of new methods were
designed for the experimentsl Figure 1: |||ustl’ati0n Of the baSiC DTW (Dynamic Tlme
Warping) paradigm in which a warp path (path of best fit) is
3.1 DTW Mechanism & Parameters calculated between a test and reference acoustic vector.

As conventionally applied the DTW algorithm allows the time-

alignment of two vectors such that a distance may be calculatgfuitively, these transitions and excursions indicate the
between the two aligned vectors. Fundamental to this approagfbodness of fit’, and hence temporal alignment of the two
is the calculation of a warp path: an alignment of the two vectoggoustic parameters in question. Diagonal transitions indicate
which is constrained by conditions of monotony, continuity an¢he contours are well aligned at that point, whereas horizontal
limited divergence, and which, in essence, stretches portions{d vertical indicate misalignment. Excursions show regions of
each vector (through repetition of values) so that their alignmegfignment (diagonal) or misalignment (vertical or horizontal).
is optimal (mean distance between aligned pairs along the pathe number of excursions indicates the number of temporal
is minimal). In conventional DTW the warp path is a by-producidjustments required for a best match, while the length of
of the distance calculation and not generally used further.  excursions the degree of alignment (diagonal) or misalignment

Clearly, however, the warp path encodes details ofdlative (vertical or horizontal) in that region.

temporal differences between the two vectors in question; Nine properties of the warp path were extracted relating to the
other words their relative dynamics. To quantify suchoncept to transitions and excursions. For each of the three
information means to create a powerful tool for examiningirections of transition (horizontal, diagonal, and vertical) the

dynamic encoding. following three properties were measured: the total number of

While there are any number of variants on the DTW algorithm,éansmons in that direction; the number of excursions in that

. - . ; Irection; the length of the longest excursion in that direction.
very simple approach allowing only horizontal, vertical, an

. L . L . Il values were normalised by dividing them by the total length
diagonal transitions (without skipping) was chosen in order to -
e . . of the warp path (yielding a value between 0 and 1).
facilitate the extraction of warp path properties.

- . - . Two additional measures were devised in an attempt to quantify

Examining a warp path, as illustrated in figure 1 and employin . . .

the formulation above, certain key properties of the warp pa e macro alignment of the two acoustic parameters. The first
' simply measured the ratio of the warp path length (K) to the

become clear. Aransition is a movement along the warp path . o
9 b P onger of the two acoustic parameters (values close to 1 indicate

from one point to the next. Transitions may be horizonta # o . ;
. . . o . ittle “non-productive” warping). A second measu®, (which
diagonal, or vertical. A series of transitions, all in the same

direction and bounded by either a transition in another direCtio{C]r?elctL:‘:::)?gt?(l;];|m§atri]n(]jsltagtcheo?‘ft:]heesvt\:zzpthalir;r]Z(\'[zki,:]ﬁ]) frtcr)]r: start
or the end of the warp path may be considereexanrsion.For y op P 9 J 9

instance, in figure 1, there are a total of eight diagonzs[l’l]) and end-points([M,N]), was also created.



1 & min( M , N X
6:_Z||k_1k (M, N) )| X = =
K & max(M ,N) max(X) — min(X)

3.2 Speaker ldentity Experiments

Experiments to determine the degree of identity encoding we Dynamic Static
conducted by calculating intra-speaker and inter-speaker sco £
for individual sentence, repetition and acoustic paramet
couplings using the procedure described above.
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In order that the influence of other speaker characteristics w
minimised inter-speaker comparisons were only made betwe
speakers of the same gender.
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Discriminant analysis [5], the degree of separation betwee Score Score
inter-speaker score and intra-speaker score distributions, w

applied. This yielded a single percentile figure that measured thgyure 2: Speaker identity discriminate analysis results showing
overlap between the two distributions:- 100% being no overlap ate of 74.69% for dynamically encoded information and 54.8%
and 0% implying no separability. It is worth noting that thISfor statically encoded information. The intra-speaker score

figure is an absolute lower-bound on the performance of o . . .
9 o P - Jistribution is represented by the broken-line, while the inter-
recognition system that employed the parameterisation an

weightings. speaker distribution is represented by the solid line.

3.3 Speaker Dialect Experiments

Dynamic Static
Experiments to determine the degree of dialect encoding we = :

conducted by computing scores between instances of individt  » { :
acoustic parameters for each sentence and repetition pairings.

In order that the influence of other speaker characteristics w  «
minimised only inter-speaker and intra-gender scores we
calculated (i.e., always between different speakers but of tl : : : . : ; . : . .
same gender). (o] 2 4 6 8 0 2 4 6 8

Dialect Difference Dialect Difference
Characteristic | Dynamic Static Combined Figure 3: Speaker dialect correlation analysis results showing a
Identity 74.6% 54.8% 75.2% correlation of 0.563 for dynamically encoded information and
Dialect 0.563 0.452 0.584 0.452 for statically encoded information. Dialect difference

Table 2: Speaker identity and dialect encoding resuILQetween contrasted speakers is plotted along the horizontal axis.

contrasting dynamic and static encoding.

Such an approach removes all absolute static information about
To allow the evaluation of dialect encoding, a dialect differencihe parameters (e.g., absolute pitch level). Table 3 presents the
score was calculated for each comparison as the absoligsults of the normalisation when purely dynamic properties are
difference between the dialect values assigned the speakersxdmined.
that utterance. For instance, all comparisons between a speaker
with a dialect score of seven, and another with a score ¢+3 — - -
would be regarded as having a dialect difference of four. T eseCharaCt?”St'C Un-Normalised Normalised
dialect differences were then correlated with the values extragted—dentity 74.6% 69.6%
Dialect 0.563 0.524

from the DTW based comparison method.
Table 3: Speaker identity and dialect encoding results showing
4. RESULTS degree of dynamic encoding as measured when all acoustic
parameters are normalised into the range 0—1.
Table 2, and figures 2 and 3 show the basic results for speaker

identity and dialect when measures of the dynamic encoding are . L
contrasted with static encoding measures. %’able 4 shows the results of the analysis of the individual

acoustic parameters:- energy, fundamental frequency, voicing
In order to ensure that purely dynamic (temporal) properties ehd zero crossing rate, as to their individual encodings of
the acoustic contours were being employed the parameters wapeaker identity and dialect.
normalisedinto the range 0—1 via the following formulation:




In order to evaluate the utility of the warp path parameters whégss than that when all four parameters are combined (showing
compared with the more conventional DTW distance approacthe utility of using multiple parameters).

speaker identity and dialect encoding experiments were . ) ) . .
conducted which directly contrasted the two measures. Tablev\gIen the methodology itself is examined, as illustrated in table

shows the results of those experiments.

5, an interesting result becomes clear. The warp path encodes, or
more accurately is capable of extracting significantly higher
levels of both identity and dialect encoding, than the DTW

Acoustic Identity Dialect distance itself. This has implications for recognition systems
Parameter Encoding Encoding employing dynamic-time-warping, as well as potentially offering
Energy 58.2% 0.359 a newlease on life’for an algorithm that is little used in today’s

F, 64.6% 0.364 recognition engines. Indeed, past investigations [3] have shown
Voicing 47 6% 0261 the S|gn|f|cant_ _reductlon inerror rate achievable by_ a DTW
Zero Crossings 51.5% 0.306 based recognition system that incorporates properties of the

Table 4: Contrast of the four prosodic parameters as to degrg\’earp path.

of speaker identity and dialect encoding. Though not reported on here, further experiments [1] examined
other parameters of the experimental design. The individual

warp path parameters were all found to be of some utility in

5. DISCUSSION extracting encoded speaker characteristics; though, when

- . . ... considered alone, only two showed a performance equivalent to
Examining the results presented in the previous section it | . . "
: . X . the DTW distance, namely the number of horizontal transitions,

clear that both identity and dialect show high degrees @ : -
and thed-distance. However, as seen above, a weighted sum of

_enco_dlng in the prosodic pa_rameter_s. Th!s is well known .f%ose parameters appears (at least for the current problem) to be
identity but somewhat surprising for dialect: the three AustrallaglI nificantly superior to the conventional distance
idiolects are defined by their allophonic variance [2]. As can bad y sup '

seen from figure 3 the dialect correlation with the measuregimilarly, speaker gender discrimination experiments [1] were
parameters is a general trend, and one that does not apply incalied out. As expected, static measures of fundamental

instances. frequency were the strongest discriminators. However all four
prosodic parameters encoded some gender specific information
— - and even after normalisation of parameters into the range 0—1,
Characteristic DTW Warp Combined speaker gender could be discrim?nated at over 77%. °
Distance Path
Identity 54.2% 72.0% 74.6% 6. REFERENCES
Dialect 0.301 0.450 0.563
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