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ABSTRACT way. Particle (sub-word)-gram language models will be built
for Russian using a fixed set of particles. Preliminary results
In this paper the main differences between language modellifgr models with arbitrary and optimised decompositions of words
of Russian and English are examined. A Russian corpus andrlo these particles will be presented.

comparable English corpus are described. The effects of high

inflectionality in Russian and the relationship between the out- 2.  CORPORA CHARACTERISTICS

of-vocabulary rate and vocabulary size are investigated. Standard

word and classV-gram language modelling techniques are ap9 1 The Russian Corpus
plied to the two corpora and perplexity results are reported. A
novel approach to the modelling of inflected languages is prorhe Russian corpus is a varied collection of around 2,500 literary
posed and its efficacy compared with the other techniques.  and non-literary texts, covering several genres and styles of com-
position. After the automated editing of common typographical
1. INTRODUCTION errors, the regularisation of formatting and the insertion of sen-
. tence boundary markers, the corpus contained approximately 100
Much work has been conducted in recent years on language madlion words. The final corpus was then partitioned into train-
elling techniques for speech recognition of English. In contrasfyg development (dev-test) and evaluation (eval-test) sets, in the

less commercially attractive yet widely spoken languages likgatio 98:1:1. The important characteristics of the partitions are
Russian have received comparatively little attention in the litefiven in Table 1.

ature (the first reported large-vocabulary recogniser for Russian
appeared only recently[3]). Moreover, there are important diffi- | ”
culties with modelling Russian which are also present in many

other languages. In this paper, we take two well-known statistical|_Total words 101,819,592| 1,036,719| 1,040,173
language modelling techniques which work well for English and | Unique words|) 1,018,856 | 115,472 | 116,029
compare their performance for modelling Russian.

train | dev-test | eval-test |

Table 1: Russian corpus partitions
Russian differs from English in two important ways when consid-
ering statistical language modelling. Firstly, Russian is a highly-
inflected language—almost all content words have several inflec-
tions (word-endings) which change the grammatical case, gend&,2. The English Corpus
number, etc. of the word—and a vocabulary of comparable utility
to that for English requires that the number of vocabulary word$he British National Corpus (BNC) was chosen for use in the
be an order of magnitude greater. Secondly, a consequence of thisglish-language experiments, due to its similarity to the Rus-
inflectionality is a relaxation in the word order of Russian wordssian corpus in terms of composition and size. After editing to cor-
In practice however, a completely free ordering of words is notect common inconsistencies in the corpus, partitions for training,
observed, and regular stylistic patterns are seen. Changes in wolel/-test and eval-test were obtained in a similar ratio to that for
order generally serve to lend more weight to particular words ithe Russian corpus. The characteristics of the resulting partitions
the sentence. In this paper, the salient characteristics of a Ruae given in Table 2
sian corpus that has been compiled, will be compared against a
well-known English corpus. | [ train [ dev-test | eval-test]

Total words 113,522,206| 1,018,958| 998,680
Unique words 406,653 37,072 37,960

Many Russian words are formed in a “composite” fashion. The
addition of affixes to a root “string” forms a word-stem which

generally has a new lexical meaning to that of its root. The af-
fixes which are used as building blocks in this way are common
to many words, and often colour the new words in a predictable

Table 2: BNC corpus partitions



2.3. Effect of vocabulary size on OOV-rate Russian Corpus BNC

Cutoffs (bi,tri) 1,1] 0,0 1,1] 0,0
The graph in Figure 1 shows how the percentage of out-of- | Perplexity || 407.2| 354.7 || 240.8| 236.8|
vocabulary (OOV) words—words occurring in the test set which 3-gram hits (%)]] 54.7 63.6 603 | 671
did not occur during training—varies with the size of the vocab- 2-gram hits (%) 31.6 26.7 30'2 25'9
ulary for both corpora. The rate at which the percentage of OOV i hits (07 13'7 9 7 5 5 = 0
words decreases for the BNC is much greater than for the Russian gram hits (%) - . : :

corpus. From Figure 1, itis seen that the vocabulary for Russiap, . 3. Perplexity figures andV-gram hit-rates for the two cor-

100 ‘ ‘ pora’s word trigram models with bigram (bi) and trigram (tri) cut-
D ——— Russian Corpus offs both set to one, and both set to zero

90N == q

80 < &
700 N 8 more unknown words in the history. This compares to only 2.5%
ool S | for the BNC. The second potential explanation is thagram
models are not suited to the relaxed word-ordering which occurs
o ‘ S i in Russian. The trigram hit-rates in Table 3 appear not to sup-

Percentage of out-of-vocabulary words
P2

aor ] port this argument. However, the significant perplexity reduction

sl R R [ i when singletons are retained and the high proportion of unknown
| ~ | words in the histories suggest otherwise.

1 3. CLASSN-GRAM MODELS

3.1. Overview

Figure 1: Variation of OOV-rate against (log) vocabulary size The effects of sparsity in a corpus can be partially overcome by
mapping the wordsyw, of the vocabularyy’, into classesC'—
where|C| < |V |—and then collectingV-gram statistics for the

must, on average, be an order of magnitude larger than for thﬁapped corpus. A deterministic word-to-class mapping,

BNC, in order to obtain a similar OOV-rate. For example, a 65k

vocabulary has a 1.2% OOV-rate on the BNC corpus compared to C:w—c=C(w), 1)
7.5% on the Russian corpus. The Russian corpus would require a )
vocabulary of 375k words in order to achieve a 1.2% OOV-ratdn Which a word may only belong to one class, can be obtained

A possible solution to reducing the OOV-rate is to decomposHSing an automatic clustering algorithm—words are grouped into
words into smaller lexical units. classes based on some similarity criterion. The algorithm used in

these experiments is based on Neys’s method [4]. Only one itera-
tion through the vocabulary is performed, to allow a fair compar-
ison of all the class models.

2.4. Word N-gram language model

For both corpora, a baseline word backoff trigram languag .
model employing Good-Turing discounting was built, using thj’he class-based model generates a probability for a word as a

CMU-Cambridge Toolkit [1]. For each corpus a vocabulary 0T{oroduct of the probability of the word’s membership of its class

the most frequent 65k words in the training set was used. In Tﬁ-]n: fg:lf) v[\)/rgg?a?gl;lgn:)gzsa; crrllacl)sdse;‘:.]lven a history of classes, as for

ble 3, perplexity figures are given for two trigram models built on
both corpora. One model has the bigram and trlgram cutoffs settcp(wn | wne1) = P(wn | C(wn))P(C(wn) | Cwn-1)). (2)

one, and the other has the cutoffs set to zero. Hit-rates for the cor-

responding word trigram models are also givaigram hit-rates

express the percentage of 1-grams, 2-grams, etc. used in compvgdels can be interpolated to combine the generality of the class
ing the perplexity. The frequency-of-frequency statistics for thenodel with the more specific nature of the word model, for ex-
two corpora are remarkably similar, yet it is instructive to noteample.

that when all singletoriV-grams are retained by the models, the

perplexity on the Russian test data is reduced by 12.9% comparéd2. Results

to only 1.7% for the BNC. Retaining/-gram singletons results

in a four-fold increase in the model size for both languages, selustering was performed with 204, 504, 1004 and 2004 classes.

for the following experiments the baseline models do not includ&our words (sentence boundary markers etc.) were not clustered
them. and each remained in its own class; other words could not be

moved to these classes. Perplexity figures for the déaggam
The perplexities for the Russian corpus are notably higher thanodels and the model which results from interpolating the class-
for the BNC. There are two apparent explanations for this; thbased and word trigram models are given in Table 4 for the Rus-
first is related to data sparsity in that the high percentage of OOsfan corpus and Table 5 for the BNC. The interpolation weights
words for the 65k vocabulary results in less specific histories. Iwere chosen by optimising their values using the appropriate dev-
the Russian corpus, 15% of trigrams which were “hit” had one atest set for each corpus. The final column in each table indicates



the relative improvement of the interpolated model over the base- whence, where, wherein, whereof, whither

line word trigram model. Some examples of the classes obtained | brother's, companion’s, daughter’s, father's, grandfathe
are given in Tables 6 and 7. grandmother’s, grandparents’, husbands’

better, braver, mightier, nicer, truer.

=

S,

No. of Perplexity interp. rel to word

classes|| class-based interp. | wgts(wd,cl) | model (%) Table 7: Three examples of classes of English words

204 784.4 377.9 | 0.73,0.27 7.2

504 586.0 359.3 | 0.64,0.36 11.8

1004 490.4 3475 | 0.56,0.44 14.7 4. PARTICLE N-GRAM MODELS

2004 440.0 3434 | 058,047 15.7 In a similar vein to the methods described in [2], the first exper-

65000 || 407.2 | _ | _ | —_ | iments we performed with particle (sub-wordj-gram models

o ) ) used a data-driven method to isolate useful particles for modelling
Table 4: Perplexities on Russian corpus for class trigram model§ocapylary words. However, a satisfactory method for decompos-
and interpolated word/class models for eval-test data ing words was not found and so the preliminary work described
here concentrates on optimising the decompositions of words us-
ing a set of particles that was defined beforehand. Preliminary
results will be given for particle models using an arbitrary de-

No. of Perplexity interp. rel to word . I .
classes|[ class-based interp. | wgts(wd,cl) | model(%) composition of words and an optimised decomposition of words.
204 398.3 2274 | 0.74,0.26 5.6 4.1. Motivation
504 3225 222.4 | 0.66,0.34 7.6
1004 284.7 220.1 | 0.60, 0.40 8.6 Russian words often exhibit clearer morphological patterns than
2004 261.2 220.6 | 0.53,0.47 8.4 can be found in English words. If we examine a simplified model

| 65000 || 2408 | — | — | — | of a Russian verb [5], we can determine the presence of several

constituent parts: ot which can be thought of as responsible
Table 5: Perplexities on BNC for class trigram models and interfor the nuclear meaning of the verb, attached to which may be
polated word/class models for eval-test data zero or moralerivational prefix(esand zero or onsuffix which
together form sstem The stemoften acquires an entirely new
lexical meaning with the presence of these affixes. irffec-

tion which is appended to the stem determines the grammatical

bez(without Prep.) lishjenii (lacking MscNomSg) case, gender, number etc. of therd. All the points in the word
lishionaia(lacking FemNomSg)ishjenie(lacking PINomSng) . where the constituent parts are joined can be consideresd
khotel (wanted MscSgyahotel(had wanted MscSg) pheme boundariesObviously, this is an idealised example, al-
zhelal(desired MscSg)predpochiolpreferred MscSg) . though the “synthetic” nature of Russian is also clearly visible in
moevo(mine Gen)nashevdours Gen) vashevgyours PIGen) Russian nouns, adjectives and participles.
tvoevo(yours SgGen)ch’evo(whose SgGen).

Given an initial decomposition for every word, the optimisation
Table 6: Three examples of classes of Russian words with thedlgorithm described below attempts to determine the best decom-
meanings and part-of-speedPrep=prepositionMsc=masculine, position of words[/(w), into a fixed set¥, of particlesu;,
Fem=feminine, Non¥nominative, Gerrgenitive, Sg=singular,
Pi=plural U:w— U(w) =uo,u1,... ,ua u; € V.
Only the orthography of words and the statistics of their occur-
rence in the corpus are used by the algorithm. Since the identity
. . of a morpheme is distorted by the environment in which it oc-
3.3. Discussion curs, we can expect that the decompositions which are obtained

will not necessarily correspond to conventional linguistic decom-

As can be seen from Tables 4 and 5, similar relative improvéssgitions of words into morphemes. Indeed, a decomposition of
ments are obtained for both corpora when the class-based modg/s, s into uninflected stems plus inflections, rather than into con-

are interpolated with the word model. It is interesting to note thaétituentmorphs may be preferred but since the algorithm does

better absolute improvements in perplexity are obtained for t%t assume any prior linguistic knowledge about the language,

Russian corpus and that the optimal number of classes is grealgr paye jittle control over which decompositions are obtained.
for Russian. Closer examination of the contents of classes ob-

tained for Russian reveals many clear groupings: e.g. semantiven a decomposition for each word, the conditional word prob-

cally similar words with a particular grammatical inflection; and,ability can be computed, for example, with a particle bigram
all inflected forms of one word. Itis much easier to attach a conmodel as follows:

sistent linguistic meaning to the contents of the Russian classes
than to the contents of the English classes. It should be noted P(wn | wn—1) = P(ug™, ... ,ul™ |ug "~ ... ,up
that better absolute results can be expected across all models b Wy | Wy wy, wy wy, n—

. . . - p. . ¥P(“A [ ugy) - Puy™y [ug”s) - Plug |ug )
allowing further iterations during clustering, and by using longer wn1 | wno_1 w1 | wy_1
N-grams in the class models. Plug™™" Jug”7") - Plug" ™" [ug" 7). (3)



Relative frequencies of the occurrences of pairs of particlasModel Perplexity interp. wgts | rel to word
can be used to compute the above conditional probabilities andypPe eval-test] interp. | (wd, pt, cl) | model(%)
smoothed in the same way as for conditional word probabilities| init 3g 585.7 396.1 | 0.78,0.22,0 2.7

init 49 455.3 381.8 | 0.58,0.42,0 6.3
4.2.  Word decomposition algorithm final 3g || 586.0 | 396.1 | 0.78,022,0| 2.7
The word decomposition algorithm seeks to optimise the decorg f!nal 49 || 4550 | 381.6 | 0.58,042,0 6.3
position of each word in an iterative reestimation and maximisa _final 49 || 455.0 | 333.8 | 0-34’0-31’0-35| 18.0 |

tion fashion. For each word in turn, the probability of the decom:-

position of a word into particles is maximised, and the particIeTable 8: Perplexities on Russian corpus for particle(pt) 3- and

statistics are reestimated. This process of local maximisationszllégrarn models before (init) and after (final) optimisation, and in-

repeated for every word, until no furtherimprovement is obtainec}.e rpolated particle, word(wd) and 2004-class(cl) trigram models

The fixed set of particlesp, is chosen to be all possible single

characters, and (up to) the 1000 most frequesttiples @ =  that some improvement is obtained, even with the particle trigram
2,3...) of characters, occurring in vocabulary words in the cormodel, suggests that the method is tackling the data sparsity prob-
pus. The initial decomposition is generated by splitting worddem to some extent. The optimisation algorithm has not improved
into this set of particles by finding the largest particle that occurte perplexity on the test data, but did tidy up several initial de-
at the beginning of the word, then finding the largest particle ii§ompositions into more intuitive decompositions. The initial set
the remainder of the word, and so on until the end of the wor@f particles was not an optimal choice and a better approach may
is reached. Unigram and bigram particle statistics are collectdtf to select initial particles according to their usefulness. In addi-
from these initial word decompositions, including particle contion, the final decompositions are highly dependent on the initiali-
texts which cross word boundaries. For each wardpn turn, the ~ Sation that is used, and some means of cross-validation or perturb-
best path throughw is found, and the particle statistics for this ing the decompositions may find more optimal decompositions.
new path are updated. The best path is the path with the highest

probability which is computed as the product of conditional parti- 5. CONCLUSION

cle bigram probabilities for particles withia, multiplied by the

sum of weighted cross-word particle probabilities for all worddn this paper, we have highlighted the different characteristics of
that co-occur withw. The weight for each cross-word probabil- Russian and English and discussed methods to alleviate the acute

ity is the bigram count for the two words divided bys unigram ~ data sparsity effects caused by the vastly increased vocabulary

count. size. Class models have been built for the Russian corpus and
shown to provide better relative improvements in perplexity than
4.3. Results were obtained for English/N-gram particle models have been

built for Russian and shown to improve the perplexity when inter-
The vocabulary to be decomposed was the same 65k words uge@lated with word- and class-based models. A statistical method
in the Russian word model. The most frequently occurring 10081 optimising the decomposition of words into particles has also
words and words shorter than 4 characters long were not consféeen presented but not shown to improve the perplexity. Further
ered for decomposition. Starting with the initial decompositiorivork on the particle model will concentrate on the groupings de-
of words, the algorithm performed three iterations over all vocaiermined by the clustering algorithm which had the unexpected
ulary words until there was no further change in any word's deProperty of grouping together words with similar morphological
composition. In total, about 950 word decompositions were impatterns. Also, the technique for optimising word decompositions
proved. On average, there are 2.9 particles per vocabulary wortill be incorporated into a particle selection mechanism.

Standard backoff particle trigram and 4-gram models were built
using the initial decompositions of words, and using the decom-
positions after reestimation by the algorithm. There were 5340.
particles in the model built using the initial word decompositions
(init), and 5334 in the model using the optimised decompositions
(final). TheN-gram (N = 2,3, 4) cutoffs for all models were o
set to one. The final 4-gram model was 0.1% smaller than the
init 4-gram model. Word level perplexities are given in Table 8
along with perplexities for the model formed by the interpolation3
of the particle model with the word model, and with the 2004-"
class model from Section 3.

4.4. Discussion 4.

From Table 8 we observe that small improvements in perplex-
ity are obtained when the particle model is interpolated with thg.
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