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ABSTRACT

In this paper the main differences between language modelling
of Russian and English are examined. A Russian corpus and a
comparable English corpus are described. The effects of high
inflectionality in Russian and the relationship between the out-
of-vocabulary rate and vocabulary size are investigated. Standard
word and classN -gram language modelling techniques are ap-
plied to the two corpora and perplexity results are reported. A
novel approach to the modelling of inflected languages is pro-
posed and its efficacy compared with the other techniques.

1. INTRODUCTION

Much work has been conducted in recent years on language mod-
elling techniques for speech recognition of English. In contrast,
less commercially attractive yet widely spoken languages like
Russian have received comparatively little attention in the liter-
ature (the first reported large-vocabulary recogniser for Russian
appeared only recently[3]). Moreover, there are important diffi-
culties with modelling Russian which are also present in many
other languages. In this paper, we take two well-known statistical
language modelling techniques which work well for English and
compare their performance for modelling Russian.

Russian differs from English in two important ways when consid-
ering statistical language modelling. Firstly, Russian is a highly-
inflected language—almost all content words have several inflec-
tions (word-endings) which change the grammatical case, gender,
number, etc. of the word—and a vocabulary of comparable utility
to that for English requires that the number of vocabulary words
be an order of magnitude greater. Secondly, a consequence of this
inflectionality is a relaxation in the word order of Russian words.
In practice however, a completely free ordering of words is not
observed, and regular stylistic patterns are seen. Changes in word
order generally serve to lend more weight to particular words in
the sentence. In this paper, the salient characteristics of a Rus-
sian corpus that has been compiled, will be compared against a
well-known English corpus.

Many Russian words are formed in a “composite” fashion. The
addition of affixes to a root “string” forms a word-stem which
generally has a new lexical meaning to that of its root. The af-
fixes which are used as building blocks in this way are common
to many words, and often colour the new words in a predictable

way. Particle (sub-word)N -gram language models will be built
for Russian using a fixed set of particles. Preliminary results
for models with arbitrary and optimised decompositions of words
into these particles will be presented.

2. CORPORA CHARACTERISTICS

2.1. The Russian Corpus

The Russian corpus is a varied collection of around 2,500 literary
and non-literary texts, covering several genres and styles of com-
position. After the automated editing of common typographical
errors, the regularisation of formatting and the insertion of sen-
tence boundary markers, the corpus contained approximately 100
million words. The final corpus was then partitioned into train-
ing, development (dev-test) and evaluation (eval-test) sets, in the
ratio 98:1:1. The important characteristics of the partitions are
given in Table 1.

train dev-test eval-test

Total words 101,819,592 1,036,719 1,040,173
Unique words 1,018,856 115,472 116,029

Table 1: Russian corpus partitions

2.2. The English Corpus

The British National Corpus (BNC) was chosen for use in the
English-language experiments, due to its similarity to the Rus-
sian corpus in terms of composition and size. After editing to cor-
rect common inconsistencies in the corpus, partitions for training,
dev-test and eval-test were obtained in a similar ratio to that for
the Russian corpus. The characteristics of the resulting partitions
are given in Table 2

train dev-test eval-test

Total words 113,522,206 1,018,958 998,680
Unique words 406,653 37,072 37,960

Table 2: BNC corpus partitions



2.3. Effect of vocabulary size on OOV-rate

The graph in Figure 1 shows how the percentage of out-of-
vocabulary (OOV) words—words occurring in the test set which
did not occur during training—varies with the size of the vocab-
ulary for both corpora. The rate at which the percentage of OOV
words decreases for the BNC is much greater than for the Russian
corpus. From Figure 1, it is seen that the vocabulary for Russian
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Figure 1: Variation of OOV-rate against (log) vocabulary size

must, on average, be an order of magnitude larger than for the
BNC, in order to obtain a similar OOV-rate. For example, a 65k
vocabulary has a 1.2% OOV-rate on the BNC corpus compared to
7.5% on the Russian corpus. The Russian corpus would require a
vocabulary of 375k words in order to achieve a 1.2% OOV-rate.
A possible solution to reducing the OOV-rate is to decompose
words into smaller lexical units.

2.4. WordN -gram language model

For both corpora, a baseline word backoff trigram language
model employing Good-Turing discounting was built, using the
CMU-Cambridge Toolkit [1]. For each corpus a vocabulary of
the most frequent 65k words in the training set was used. In Ta-
ble 3, perplexity figures are given for two trigram models built on
both corpora. One model has the bigram and trigram cutoffs set to
one, and the other has the cutoffs set to zero. Hit-rates for the cor-
responding word trigram models are also given.N -gram hit-rates
express the percentage of 1-grams, 2-grams, etc. used in comput-
ing the perplexity. The frequency-of-frequency statistics for the
two corpora are remarkably similar, yet it is instructive to note
that when all singletonN -grams are retained by the models, the
perplexity on the Russian test data is reduced by 12.9% compared
to only 1.7% for the BNC. RetainingN -gram singletons results
in a four-fold increase in the model size for both languages, so
for the following experiments the baseline models do not include
them.

The perplexities for the Russian corpus are notably higher than
for the BNC. There are two apparent explanations for this; the
first is related to data sparsity in that the high percentage of OOV
words for the 65k vocabulary results in less specific histories. In
the Russian corpus, 15% of trigrams which were “hit” had one or

Russian Corpus BNC
Cutoffs (bi,tri) 1, 1 0, 0 1, 1 0, 0

Perplexity 407.2 354.7 240.8 236.8

3-gram hits (%) 54.7 63.6 60.3 67.1
2-gram hits (%) 31.6 26.7 30.2 25.9
1-gram hits (%) 13.7 9.7 9.5 7.0

Table 3: Perplexity figures andN -gram hit-rates for the two cor-
pora’s word trigram models with bigram (bi) and trigram (tri) cut-
offs both set to one, and both set to zero

more unknown words in the history. This compares to only 2.5%
for the BNC. The second potential explanation is thatN -gram
models are not suited to the relaxed word-ordering which occurs
in Russian. The trigram hit-rates in Table 3 appear not to sup-
port this argument. However, the significant perplexity reduction
when singletons are retained and the high proportion of unknown
words in the histories suggest otherwise.

3. CLASSN -GRAM MODELS

3.1. Overview

The effects of sparsity in a corpus can be partially overcome by
mapping the words,w, of the vocabulary,V , into classes,C—
wherejCj < jV j—and then collectingN -gram statistics for the
mapped corpus. A deterministic word-to-class mapping,

C : w ! c = C(w); (1)

in which a word may only belong to one class, can be obtained
using an automatic clustering algorithm—words are grouped into
classes based on some similarity criterion. The algorithm used in
these experiments is based on Neys’s method [4]. Only one itera-
tion through the vocabulary is performed, to allow a fair compar-
ison of all the class models.

The class-based model generates a probability for a word as a
product of the probability of the word’s membership of its class
and the probability of that class given a history of classes, as for
the following bigram class model:

P (wn j wn�1) = P (wn j C(wn))P (C(wn) j C(wn�1)): (2)

Models can be interpolated to combine the generality of the class
model with the more specific nature of the word model, for ex-
ample.

3.2. Results

Clustering was performed with 204, 504, 1004 and 2004 classes.
Four words (sentence boundary markers etc.) were not clustered
and each remained in its own class; other words could not be
moved to these classes. Perplexity figures for the classN -gram
models and the model which results from interpolating the class-
based and word trigram models are given in Table 4 for the Rus-
sian corpus and Table 5 for the BNC. The interpolation weights
were chosen by optimising their values using the appropriate dev-
test set for each corpus. The final column in each table indicates



the relative improvement of the interpolated model over the base-
line word trigram model. Some examples of the classes obtained
are given in Tables 6 and 7.

No. of Perplexity interp. rel to word
classes class-based interp. wgts(wd,cl) model (%)

204 784.4 377.9 0.73, 0.27 7.2
504 586.0 359.3 0.64, 0.36 11.8
1004 490.4 347.5 0.56, 0.44 14.7
2004 440.0 343.4 0.53, 0.47 15.7

65000 407.2 — — —

Table 4: Perplexities on Russian corpus for class trigram models
and interpolated word/class models for eval-test data

No. of Perplexity interp. rel to word
classes class-based interp. wgts(wd,cl) model(%)

204 398.3 227.4 0.74, 0.26 5.6
504 322.5 222.4 0.66, 0.34 7.6
1004 284.7 220.1 0.60, 0.40 8.6
2004 261.2 220.6 0.53, 0.47 8.4

65000 240.8 — — —

Table 5: Perplexities on BNC for class trigram models and inter-
polated word/class models for eval-test data

bez(without Prep.), lishjenii (lacking MscNomSg),
lishionaia(lacking FemNomSg), lishjenie(lacking PlNomSng): : :

khotel (wanted MscSg), zahotel(had wanted MscSg)

zhelal(desired MscSg), predpochiol(preferred MscSg): : :

moevo(mine Gen), nashevo(ours Gen), vashevo(yours PlGen)

tvoevo(yours SgGen), ch’evo(whose SgGen): : :

Table 6: Three examples of classes of Russian words with their
meanings and part-of-speech.Prep=preposition,Msc=masculine,
Fem=feminine, Nom=nominative, Gen=genitive, Sg=singular,
Pl=plural

3.3. Discussion

As can be seen from Tables 4 and 5, similar relative improve-
ments are obtained for both corpora when the class-based models
are interpolated with the word model. It is interesting to note that
better absolute improvements in perplexity are obtained for the
Russian corpus and that the optimal number of classes is greater
for Russian. Closer examination of the contents of classes ob-
tained for Russian reveals many clear groupings: e.g. semanti-
cally similar words with a particular grammatical inflection; and,
all inflected forms of one word. It is much easier to attach a con-
sistent linguistic meaning to the contents of the Russian classes
than to the contents of the English classes. It should be noted
that better absolute results can be expected across all models by
allowing further iterations during clustering, and by using longer
N -grams in the class models.

whence, where, wherein, whereof, whither: : :

brother’s, companion’s, daughter’s, father’s, grandfather’s,
grandmother’s, grandparents’, husbands’: : :

better, braver, mightier, nicer, truer: : :

Table 7: Three examples of classes of English words

4. PARTICLE N -GRAM MODELS

In a similar vein to the methods described in [2], the first exper-
iments we performed with particle (sub-word)N -gram models
used a data-driven method to isolate useful particles for modelling
vocabulary words. However, a satisfactory method for decompos-
ing words was not found and so the preliminary work described
here concentrates on optimising the decompositions of words us-
ing a set of particles that was defined beforehand. Preliminary
results will be given for particle models using an arbitrary de-
composition of words and an optimised decomposition of words.

4.1. Motivation

Russian words often exhibit clearer morphological patterns than
can be found in English words. If we examine a simplified model
of a Russian verb [5], we can determine the presence of several
constituent parts: aroot which can be thought of as responsible
for the nuclear meaning of the verb, attached to which may be
zero or morederivational prefix(es)and zero or onesuffix, which
together form astem. The stemoften acquires an entirely new
lexical meaning with the presence of these affixes. Aninflec-
tion which is appended to the stem determines the grammatical
case, gender, number etc. of theword. All the points in the word
where the constituent parts are joined can be consideredmor-
pheme boundaries. Obviously, this is an idealised example, al-
though the “synthetic” nature of Russian is also clearly visible in
Russian nouns, adjectives and participles.

Given an initial decomposition for every word, the optimisation
algorithm described below attempts to determine the best decom-
position of words,U(w), into a fixed set,	, of particlesui,

U : w ! U(w) = u0; u1; : : : ; uA ui 2 	:

Only the orthography of words and the statistics of their occur-
rence in the corpus are used by the algorithm. Since the identity
of a morpheme is distorted by the environment in which it oc-
curs, we can expect that the decompositions which are obtained
will not necessarily correspond to conventional linguistic decom-
positions of words into morphemes. Indeed, a decomposition of
words into uninflected stems plus inflections, rather than into con-
stituentmorphs, may be preferred but since the algorithm does
not assume any prior linguistic knowledge about the language,
we have little control over which decompositions are obtained.

Given a decomposition for each word, the conditional word prob-
ability can be computed, for example, with a particle bigram
model as follows:
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Relative frequencies of the occurrences of pairs of particles
can be used to compute the above conditional probabilities and
smoothed in the same way as for conditional word probabilities.

4.2. Word decomposition algorithm

The word decomposition algorithm seeks to optimise the decom-
position of each word in an iterative reestimation and maximisa-
tion fashion. For each word in turn, the probability of the decom-
position of a word into particles is maximised, and the particle
statistics are reestimated. This process of local maximisations is
repeated for every word, until no further improvement is obtained.

The fixed set of particles,	, is chosen to be all possible single
characters, and (up to) the 1000 most frequentn-tuples (n =

2; 3 : : : ) of characters, occurring in vocabulary words in the cor-
pus. The initial decomposition is generated by splitting words
into this set of particles by finding the largest particle that occurs
at the beginning of the word, then finding the largest particle in
the remainder of the word, and so on until the end of the word
is reached. Unigram and bigram particle statistics are collected
from these initial word decompositions, including particle con-
texts which cross word boundaries. For each word,w, in turn, the
best path throughw is found, and the particle statistics for this
new path are updated. The best path is the path with the highest
probability which is computed as the product of conditional parti-
cle bigram probabilities for particles withinw, multiplied by the
sum of weighted cross-word particle probabilities for all words
that co-occur withw. The weight for each cross-word probabil-
ity is the bigram count for the two words divided byw’s unigram
count.

4.3. Results

The vocabulary to be decomposed was the same 65k words used
in the Russian word model. The most frequently occurring 1000
words and words shorter than 4 characters long were not consid-
ered for decomposition. Starting with the initial decomposition
of words, the algorithm performed three iterations over all vocab-
ulary words until there was no further change in any word’s de-
composition. In total, about 950 word decompositions were im-
proved. On average, there are 2.9 particles per vocabulary word.

Standard backoff particle trigram and 4-gram models were built
using the initial decompositions of words, and using the decom-
positions after reestimation by the algorithm. There were 5340
particles in the model built using the initial word decompositions
(init), and 5334 in the model using the optimised decompositions
(final). TheN -gram (N = 2; 3; 4) cutoffs for all models were
set to one. The final 4-gram model was 0.1% smaller than the
init 4-gram model. Word level perplexities are given in Table 8
along with perplexities for the model formed by the interpolation
of the particle model with the word model, and with the 2004-
class model from Section 3.

4.4. Discussion

From Table 8 we observe that small improvements in perplex-
ity are obtained when the particle model is interpolated with the
word-based model and also with the class-based model. The fact

Model Perplexity interp. wgts rel to word
type eval-test interp. (wd, pt, cl) model(%)

init 3g 585.7 396.1 0.78, 0.22, 0 2.7
init 4g 455.3 381.8 0.58, 0.42, 0 6.3

final 3g 586.0 396.1 0.78, 0.22, 0 2.7
final 4g 455.0 381.6 0.58, 0.42, 0 6.3

final 4g 455.0 333.8 0.34,0.31,0.35 18.0

Table 8: Perplexities on Russian corpus for particle(pt) 3- and
4-gram models before (init) and after (final) optimisation, and in-
terpolated particle, word(wd) and 2004-class(cl) trigram models

that some improvement is obtained, even with the particle trigram
model, suggests that the method is tackling the data sparsity prob-
lem to some extent. The optimisation algorithm has not improved
the perplexity on the test data, but did tidy up several initial de-
compositions into more intuitive decompositions. The initial set
of particles was not an optimal choice and a better approach may
be to select initial particles according to their usefulness. In addi-
tion, the final decompositions are highly dependent on the initiali-
sation that is used, and some means of cross-validation or perturb-
ing the decompositions may find more optimal decompositions.

5. CONCLUSION

In this paper, we have highlighted the different characteristics of
Russian and English and discussed methods to alleviate the acute
data sparsity effects caused by the vastly increased vocabulary
size. Class models have been built for the Russian corpus and
shown to provide better relative improvements in perplexity than
were obtained for English.N -gram particle models have been
built for Russian and shown to improve the perplexity when inter-
polated with word- and class-based models. A statistical method
for optimising the decomposition of words into particles has also
been presented but not shown to improve the perplexity. Further
work on the particle model will concentrate on the groupings de-
termined by the clustering algorithm which had the unexpected
property of grouping together words with similar morphological
patterns. Also, the technique for optimising word decompositions
will be incorporated into a particle selection mechanism.
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