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ABSTRACT by imposing the fuzzy measures of the similarities between

L o . . the cohort speaker models and the client model. Then the
Similarity normalization techniques are |mportantforspeakegcoring of the cohort models can be obtained by the fuzzy

verification systems as they help to better cope with Speakerintegral which acts as a fusion operator with respect to the
variability. In the conventional normalization, tlaepriori fuzzy measures

probabilities of the cohort speakers are assumed to be equal.
From this standpoint, we apply the theory of fuzzy measure
and fuzzy integral to combine the likelihood values of the
cohort speakers in which the assumption of equptiori
probabilities is relaxed. This approach rages the conven-
tional normalization term by the fuzzy integral which acts
as a non-linear fusion of the similarity measures of an ut-
terance assigned to cohort speakers. Experimental result
show that the speaker verification system using the fuzzy
integral is more flexible and favorable than the conventional

2. SIMILARITY-DOMAIN NORMALIZATION

Given an input set of sgech feature vectors

X ={&,%s, -, Zn},

the verification system has to decideXf was spoken by
the client (for the sake of simplicity, from now on we will
denote? asz). Based on the similarity domain, this can be
seen as a statistical test betweén : .S andH, : S’ where
Hy is the null hypothesis that the claimant is the clight

method. while H; is the alternative hypothesis that the claimant is an
impostorS’. The decision according to the Bayesian rule
1. INTRODUCTION for minimum risk is given by
e o . p(X|S) [ >0 : X eH,
LX) = 1
In speaker verification systems, the normalization techniques (X) pXIS)\ <6 ¢ XeH 1)

are important as they help to alleviate the variations in the

speech signals, which are due to noise, different recordingWhered is a prescribed threshold. Taking the logarithm, the

and transmission conditions [1]. There are two types of nor- likelihood ratio of (1) becomes

malization techniques for speaker recognitigrarameter lo .

andsimilarity. Some typical works in the parameter type log p(XS) — log p(X|5") { z 1o§z : § E gf (2)

were proposed by Atal [2], Furui [3]; and in the similarity . ] o

type were by Higginet al. [4], Matsui and Furui [5]. It has wherelog L(X) is also called the normalized log-likelihood

also been reported that most of speaker verification system$Ccore. The normalized log-likelihhood valuedfgiven the

are based on the similarity-domain normalization [6]. We Client model can be determined as

therefore, in this paper, will focus our attention to the veri- 1 X

fication mode with respect to the similarity normalization. log p(X1]5) = + > " logp(an]S). 3)
Generally in most similarity normalization techniques, n=1

the likelihood values of the utterance from the cohort speak- Two common methods called tlgometric mearmand the

ers whose models are closest to the claimant model, are asmaximun{7] can be used to calculate the normalized log-

sumed to be equally likely. In reality, however, this assump- likelihood score given not the client model. For a set of

tion is not often true as the similarity measures between background speaker models of s2esS’ = {51, 52,...,58},

each ohort speaker and the client speaker may be differ- the geometric mean method is defined as

ent. Basing our motivation on this drawback, we introduce B

a new normalized log-likelihood method using the concept log p(X|S") = kS Z log p(X|Ss). (4)

of fuzzy fusion. We relax the assumption of equal likelihood B ot



The maximum method is defined as: constant\ can be determined by the properties of the
fuzzy measure as follows.
logp(X1]5") = max log p(X S} (5) LetY = {y1, 9, ..., 2 }. If the fuzzy density of thg, -
’ fuzzy measure is defined as a functipny; € Y — [0, 1]
where the terntog p(X|S ) inboth (4) and (5) can be calcu-  such thay; = ga({vi}), i = 1,2, ..., m, then they,-fuzzy
lated as in (3), and except for the scaleV, it is the prob- ~ measure of a finite set can be obtained as [10]
ability of an utteranceX coming from one of the cohort n m—1 n
speakers with the assumption that ¢hpriori probabilities ¢, (V) = Zgi—|—/\ Z Z GirGist AN 9100 g
i=1

being equal. i1=1i=i1+1

As the main purpose of this paper is to attempt to im- (7)
prove the scoring of the similarity normalization, we will Provided thai # 0, (7) can be rewritten as
simply use the vector quantization (VQ) method to generate L[
the acoustical models. Thus, the log-likelihood in terms of oY) = 3 [H (1+ Agi) — 1] , (8)
the VQ distortion measure between the set of training vec- im1

tors X of the claimed speaker and the codebook of a speake

[ i
With tiog(Y) = 1, th tanA can be
S can be expressed as ith boundary conditiory(Y) e constani can

determined by solving the following equation:

log p(x,]S) = —H}cin[D(xn,bk(S)], k=1,2,..., K (6) Nal ﬁ (01200, ©

wherez,, € X, b;;(5) is a codeword of speakét, and K is =t

the codebook size. 3.2. Fuzzy Integral

3. FUZZY MEASURE AND FUZZY INTEGRAL Let (Y, B, g) be a fuzzy measure space ahd Y — [0, 1]
be a3-measurable function. A fuzzy integral over C

Stemming from the concept of fuzzy sets proposed by Zadeh? Of the functionf with respect to a fuzzy measugeis
[12], Sugeno developed the notions of fuzzy measure anddefined by

fuzzy integral [8]. A fuzzy measure is a set function with )

monotonicity but not always additivity, and a fuzzy integral /A fy)og() = QSE‘[l(Jl)l] [min(a, g(fa))] (10)

is a functional with monotonicity which is used for aggre- ’

gating information from multiple sources with respect tothe wheref,, is thea level set off, f. = {y : f(y) > a}.

fuzzy measure. The fuzzy integral in (10) is called the Sugeno integral.
WhenY = {y1,¥2, ..., yn} is afinite set, and < f(y1) <
f(y2)... < flyn) < 1, (if not, the elements of are rear-
ranged to make this relation hold), the Sugeno integral can
LetY be an arbitrary set, anibe a Borel field oft”. A set be computed by

functiong defined onB3 is a fuzzy measure if it satisfies the

3.1. Fuzzy measure

following three axioms: / fly)og(t) = mﬂélx [min(f(yi), g(Ai))] (11)
A =
1. Boundary conditiongt(#) = 0,¢(Y) = 1. where A; = {yi,¥it1,---,Ym}, and g(4;) can be recur-
2. Monotonicity:g(4) < g(B) if A C B, andA, B e sively calculated in terms of thg, -fuzzy measure as
B.

3. Continuity:limi . g(As) = g(limie Ap) if 4; € IV =g Foldiz) FAgig(dica), T <i<m. (12)
B and{A4;} is monotone (an increasing sequence of It can be seen that the above definition is not a proper
measurable sets). extension of the usual Lebesgue integral, which is not re-
covered when the measure is additive. In order to overcome
A gx-fuzzy measure is also proposed by Sugeno which s drawback, the so-called Choquet integral was proposed
satisfies another condition known as theule (A > —1): by Murofushi and Sugeno [10]. The Choquet integrafof
[ ' i follows:
G(AUB) = g(4) + g(B) + \g(A)g(B), with respect to a fuzzy measugés defined as follows

where4, B C Y,andAN B = 0. /Af(y)dg() = Z_: [f(yi) = fyiz1)]g(As) (13)

It is noted that whemk = 0, the g,-fuzzy measure be-
comes a probability measure. In general, the value of thein which f(yy) = 0.



4. FUZZY-FUSION BASED NORMALIZATION introduce the constant in (16) for each ohort speaker in

order to fine-tune the fuzzy density with respect to the Eu-

It has been mentioned in the foregoing sections thaathe clidean distance measure. At present we select the values of

priori probability of an utterance given that it is from one « by means of the training data and will further discuss this

of the cohort speakers is assumed to be equal in the convenissue in the experimental section.

tional similarity normalization methods, we use the concept

of the fuzzy measure to calculate the grades of similarity

or closeness between eacbhort speaker model and the 5. EXPERIMENTS

cliend model, ie. the fuzzy density, and the multi-attributes ) i

of these fuzzy densities. The final score for the normaliza- The commercial TI46 speech data corpus is used here for

tion of the cohort speakers can then be determined by com-the experiments. The TI46 corpus contains 46 utterances

bining all of these fuzzy measures with the corresponding SPoken repeatedly by 8 female and 8 male speakers, labeled

likelihood values using the Choquet integral. We express f1-f8 and m1-m8, respectively. The vocabulary contains a

the proposed model in mathematical terms as set of 10 computer commandgente, erase go, help, no,
rubout repeat stop start, yes. Each speaker repeated the

log L(X) = log p(X|S) — log F(X|S") (14) words 10 times in a single training session, and then again
. ] o twice in each of 8 testing sessions. The corpus is sampled
whereF'(X|5") is the fuzzy integral of the likelihood values 4 12500 samples/s and 12 bits/sample. The data were pro-

of an utteranceX’ coming from the cohort speaker s€t= cagsed in 20.48 ms frames at a frame rate at 125 frames/s.
{S :b=1,2,..., B} with respect to the fuzzy measures The frames were Hamming windowed and preemphasized
of speaker similarity. It is defined as follows: with 2=0.9. 46 mel-spectral bands of a width of 110 mel

B and 20 mel-frequency cepstral coefficients (MFCC) were
F(X|5') = Z [p(X]Sy) — p(X|Sp-1)]g(Z)  (15) determined for each frame. N
b=1 In the training session, each speaker's 100 training to-

) . kens (10 utterances x 1 training session x 10 repetitions)
wherep(X|5;) has been previously defined, were used to train the speaker-based VQ codebook by clus-
Zo = {56,541, -, 58}, 9(Zb) is the fuzzy measure of  tering the set of all the speakers' MFCC into codebooks of
Zp, p(X]S0) =0, and the relation , 32, 64 and 128 codewords using the LBG algorithm [12].

0 < p(X[51) < /p(X|52)’ .-, p(X]S5p) holds, otherwise The verification was tested in the text-dependent mode.
the elements is" need to be rearranged. Since both the geometric mean and the fuzzy fusion meth-
From the previous presentation of the fuzzy measure ;4 herate on the principle of integration and depend on
and the fuzzy integral, it is noticed that the key factor for the size of the cohort set, we therefore compare the per-
the fuzzy fusion process is the fuzzy density. If the fuzzy ¢, ances of these two methods. This is a closed set test
densities can be determined then the fuzzy measures can bg. o ohort speakers in the trainig are the same as those
identified, which make it ready for the operation of the fuzzy in the testing. For the purpose of comparison and due to

integral. For the fusion of similarity measures, we consider a limited number of speakers, we select for each claimed

the fuzzy densﬂygs the degree of similarity or closeness be'speaker a cohort set of three (same gender) whose acous-
tween the acoustic model of a cohort speaker and that of th

; ) G &ic models are closest to the claimed model. In the testing
client, ie. the greater the value of the fuzzy dgnsﬂy is, the mode, eachahort speaker's 160 test tokens (10 utterances
closgr the two models are. Therefore, we define the fuzzyX 8 testing sessions x 2 repetitions) are tested agaat
density as claimed speakers' 10-word models.
(16) To identify the fuzzy densities for the cohort speakers,
we select the values of by means of the training data. The
wherec is a positive constant|.||? is the Euclidean norm  range ofe was specified to be from 1 to 50, and a unit step
which indicates the root-mean-square averaging pro¢gss, size was applied in the incremental trial process. It was ob-
is the mean code-vector of a cohort speakgrandis is served that using different values®for different speakers
the mean code-vector of the client speaker could give more reduction in the equal error rates. How-
It is reasonable to assume that some acoustic models oéver, as an intial investigation we chose the same value for
a cohort speaker, say;, may be more similar to those of each gender set, that is = 10 for the female cohort set
the client speakef than those of another cohort speaker, and« = 1 for the male cohort set. As a result, Table 1
sayS,. However, some other acoustic modelssefmay be shows the mean equal-error rates for the 16 speakers with
more similar to those of than those of;. Since the mean  three codebook sizes of 32, 64 and 128 entries. The total
code-vectors are globally generated from the codebooks in-average EER reductions by the fuzzy fusion (FF) in com-
cluding all different utterances of the speakers, we thereforeparison with the geometric mean (GM) for the three code-

gp = 1 — exp(—o||vp — 175||2)



book sizes of 32, 64 and 128 are (5.87-4.20)=1.67%, (4.23-
3.17)= 1.06%, (3.53-2.66)= 0.87%, respectively. Through
these results, it can be seen that the speaker verification sys-
tem using the fuzzy fusion is more favorable than using the
geometric mean method.

Table 1. Equal error rates (%EERS) for the 16 speakers
using geometric mean (GM) and fuzzy fusion (FF)

GM FF
Codebook Size Codebook Size
Speaker 32 64 128 32 64 128
f1l 4.17 3.01 240 1.80 1.19 1.19
f2 598 119 179 119 060 1.20
f3 990 566 367 7.79 370 233
f4 0.00 000 000 0.00 0.00 0.00
5 1.78 178 059 119 0.60 0.00
f6 6.67 301 180 241 059 0.00
f7 738 432 361 6.48 400 230
f8 12.76 9.73 9.22 10.05 8.22 7.62
m1l 3.07 305 306 3.03 303 243
m2 417 128 122 314 122 1.22
m3 703 700 632 6.87 685 592
m4 10.77 828 790 829 6.89 6.91
m5 270 244 180 162 063 1.19
m6 8.43 744 6.53 7.53 547 472
m7 718 588 483 6.86 4.88 3.65
m8 183 301 240 180 121 1.19
Female 6.08 366 289 350 248 192
Male 565 480 417 489 3.86 3.40
Total 587 423 353 420 3.17 2.66

6. CONCLUSIONS

A fusion algorithm based on the fuzzy integral has been
proposed and implemented in the similarity normalization
for speaker verification. The the experimental results show
that the application of the proposed method is superior to
that of the conventional normalization. The key difference
between the two methods is that the assumption of equal
likelihood is not recessary for the fuzzy integral based nor-
malization due to the concept of the fuzzy measure. One
important issue arising here for further investigation is the
optimalidentification of the fuzzy densities in terms of the
constanty, which can offer flexibility and have great effect
in the fuzzy fusion. Similar work on this fuzzy fusion for
numeral recognition was discussed in [13]. At present, the
fuzzy densities were only determined based on a rough es-
timate of the values fat using a small range of integers.
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