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ABSTRACT

Similarity normalization techniques are important for speaker
verification systems as they help to better cope with speaker
variability. In the conventional normalization, thea priori
probabilities of the cohort speakers are assumed to be equal.
From this standpoint, we apply the theory of fuzzy measure
and fuzzy integral to combine the likelihood values of the
cohort speakers in which the assumption of equala priori
probabilities is relaxed. This approach replaces the conven-
tional normalization term by the fuzzy integral which acts
as a non-linear fusion of the similarity measures of an ut-
terance assigned to cohort speakers. Experimental results
show that the speaker verification system using the fuzzy
integral is more flexible and favorable than the conventional
method.

1. INTRODUCTION

In speaker verification systems, the normalization techniques
are important as they help to alleviate the variations in the
speech signals, which are due to noise, different recording
and transmission conditions [1]. There are two types of nor-
malization techniques for speaker recognition:parameter
and similarity. Some typical works in the parameter type
were proposed by Atal [2], Furui [3]; and in the similarity
type were by Higginset al. [4], Matsui and Furui [5]. It has
also been reported that most of speaker verification systems
are based on the similarity-domain normalization [6]. We
therefore, in this paper, will focus our attention to the veri-
fication mode with respect to the similarity normalization.

Generally in most similarity normalization techniques,
the likelihoodvalues of the utterance from the cohort speak-
ers whose models are closest to the claimant model, are as-
sumed to be equally likely. In reality, however, this assump-
tion is not often true as the similarity measures between
each cohort speaker and the client speaker may be differ-
ent. Basing our motivation on this drawback, we introduce
a new normalized log-likelihood method using the concept
of fuzzy fusion. We relax the assumption of equal likelihood

by imposing the fuzzy measures of the similarities between
the cohort speaker models and the client model. Then the
scoring of the cohort models can be obtained by the fuzzy
integral which acts as a fusion operator with respect to the
fuzzy measures.

2. SIMILARITY-DOMAIN NORMALIZATION

Given an input set of speech feature vectors
X = f~x1; ~x2; � � � ; ~xNg,
the verification system has to decide ifX was spoken by
the client (for the sake of simplicity, from now on we will
denote~x asx). Based on the similarity domain, this can be
seen as a statistical test betweenH0 : S andH1 : S0 where
H0 is the null hypothesis that the claimant is the clientS,
whileH1 is the alternative hypothesis that the claimant is an
impostorS0. The decision according to the Bayesian rule
for minimum risk is given by

L(X) =
p(XjS)

p(XjS0)

�
> � : X 2 H0

� � : X 2 H1
(1)

where� is a prescribed threshold. Taking the logarithm, the
likelihood ratio of (1) becomes

logp(XjS) � log p(XjS0)

�
> log � : X 2 H0

� log � : X 2 H1
(2)

wherelogL(X) is also called the normalized log-likelihood
score. The normalized log-likelihhood value ofX given the
client model can be determined as

log p(XjS) =
1

N

NX
n=1

logp(xnjS): (3)

Two common methods called thegeometric meanand the
maximum[7] can be used to calculate the normalized log-
likelihood score given not the client model. For a set of
background speaker models of sizeB: S0 = fS1; S2; : : : ; SBg,
the geometric mean method is defined as

log p(XjS0) =
1

B

BX
b=1

log p(XjSb): (4)



The maximum method is defined as:

logp(XjS0) = max
Sb2S0

log p(XjSbg: (5)

where the termlog p(XjSb) in both (4) and (5) can be calcu-
lated as in (3), and except for the scale1=N , it is the prob-
ability of an utteranceX coming from one of the cohort
speakers with the assumption that thea priori probabilities
being equal.

As the main purpose of this paper is to attempt to im-
prove the scoring of the similarity normalization, we will
simply use the vector quantization (VQ) method to generate
the acoustical models. Thus, the log-likelihood in terms of
the VQ distortion measure between the set of training vec-
torsX of the claimed speaker and the codebook of a speaker
S can be expressed as

logp(xnjS) = �min
k

[D(xn; bk(S)]; k = 1; 2; : : :;K (6)

wherexn 2 X, bk(S) is a codeword of speakerS, andK is
the codebook size.

3. FUZZY MEASURE AND FUZZY INTEGRAL

Stemming from the concept of fuzzy sets proposed by Zadeh
[12], Sugeno developed the notions of fuzzy measure and
fuzzy integral [8]. A fuzzy measure is a set function with
monotonicity but not always additivity, and a fuzzy integral
is a functional with monotonicity which is used for aggre-
gating information from multiple sources with respect to the
fuzzy measure.

3.1. Fuzzy measure

Let Y be an arbitrary set, andB be a Borel field ofY . A set
functiong defined onB is a fuzzy measure if it satisfies the
following three axioms:

1. Boundary conditions:g(;) = 0; g(Y ) = 1.

2. Monotonicity:g(A) � g(B) if A � B, andA;B 2

B.

3. Continuity:limi!1 g(Ai) = g(limi!1Ai) if Ai 2
B andfAig is monotone (an increasing sequence of
measurable sets).

A g�-fuzzy measure is also proposed by Sugeno which
satisfies another condition known as the�-rule (� > �1):

g(A [B) = g(A) + g(B) + �g(A)g(B);

whereA;B � Y , andA \B = ;.
It is noted that when� = 0, theg�-fuzzy measure be-

comes a probability measure. In general, the value of the

constant� can be determined by the properties of theg�-
fuzzy measure as follows.

LetY = fy1; y2; :::; xmg. If the fuzzy density of theg�-
fuzzy measure is defined as a functiong : yi 2 Y ! [0; 1]

such thatgi = g�(fyig), i = 1; 2; :::;m, then theg�-fuzzy
measure of a finite set can be obtained as [10]

g�(Y ) =

nX
i=1

gi+�

m�1X
i1=1

nX
i2=i1+1

gi1gi2+:::+�
m�1g1g2:::gm:

(7)
Provided that� 6= 0, (7) can be rewritten as

g�(Y ) =
1

�

"
mY
i=1

(1 + �gi)� 1

#
: (8)

With boundary conditiong(Y ) = 1, the constant� can be
determined by solving the following equation:

� + 1 =

mY
i=1

(1 + �gi): (9)

3.2. Fuzzy Integral

Let (Y;B; g) be a fuzzy measure space andf : Y ! [0; 1]

be aB-measurable function. A fuzzy integral overA �

Y of the functionf with respect to a fuzzy measureg is
defined byZ

A

f(y) � g(�) = sup
�2[0;1]

[min(�; g(f�))] (10)

wheref� is the� level set off , f� = fy : f(y) � �g.
The fuzzy integral in (10) is called the Sugeno integral.

WhenY = fy1; y2; :::; yng is a finite set, and0 � f(y1) �

f(y2)::: � f(yn) � 1, (if not, the elements ofY are rear-
ranged to make this relation hold), the Sugeno integral can
be computed byZ

A

f(y) � g(�) =
m

max
i=1

[min(f(yi); g(Ai))] (11)

whereAi = fyi; yi+1; :::; ymg, and g(Ai) can be recur-
sively calculated in terms of theg�-fuzzy measure as

g(Ai) = gi + g(Ai�1) + �gig(Ai�1); 1 < i � m: (12)

It can be seen that the above definition is not a proper
extension of the usual Lebesgue integral, which is not re-
covered when the measure is additive. In order to overcome
this drawback, the so-called Choquet integral was proposed
by Murofushi and Sugeno [10]. The Choquet integral off

with respect to a fuzzy measureg is defined as follows:Z
A

f(y)dg(�) =

mX
i=1

[f(yi) � f(yi�1)]g(Ai) (13)

in whichf(y0) = 0.



4. FUZZY-FUSION BASED NORMALIZATION

It has been mentioned in the foregoing sections that thea
priori probability of an utterance given that it is from one
of the cohort speakers is assumed to be equal in the conven-
tional similarity normalization methods, we use the concept
of the fuzzy measure to calculate the grades of similarity
or closeness between each cohort speaker model and the
cliend model, ie. the fuzzy density, and the multi-attributes
of these fuzzy densities. The final score for the normaliza-
tion of the cohort speakers can then be determined by com-
bining all of these fuzzy measures with the corresponding
likelihood values using the Choquet integral. We express
the proposed model in mathematical terms as

logL(X) = log p(XjS) � logF (XjS0) (14)

whereF (XjS0) is the fuzzy integral of the likelihoodvalues
of an utteranceX coming from the cohort speaker setS0 =

fSb : b = 1; 2; : : : ; Bg with respect to the fuzzy measures
of speaker similarity. It is defined as follows:

F (XjS0) =

BX
b=1

[p(XjSb)� p(XjSb�1)]g(Zb) (15)

wherep(XjSb) has been previously defined,
Zb = fSb; Sb+1; : : : ; SBg, g(Zb) is the fuzzy measure of
Zb, p(XjS0) = 0, and the relation
0 � p(XjS1) � p(XjS2); : : : ; p(XjSB) holds, otherwise
the elements inS0 need to be rearranged.

From the previous presentation of the fuzzy measure
and the fuzzy integral, it is noticed that the key factor for
the fuzzy fusion process is the fuzzy density. If the fuzzy
densities can be determined then the fuzzy measures can be
identified, which make it ready for the operation of the fuzzy
integral. For the fusion of similarity measures, we consider
the fuzzy density as the degree of similarity or closeness be-
tween the acoustic model of a cohort speaker and that of the
client, ie. the greater the value of the fuzzy density is, the
closer the two models are. Therefore, we define the fuzzy
density as

gb = 1� exp(��jj~vB � ~vS jj
2
) (16)

where� is a positive constant,jj:jj2 is the Euclidean norm
which indicates the root-mean-square averaging process,~vb
is the mean code-vector of a cohort speakerSb, and~vS is
the mean code-vector of the client speakerS.

It is reasonable to assume that some acoustic models of
a cohort speaker, sayS1, may be more similar to those of
the client speakerS than those of another cohort speaker,
sayS2. However, some other acoustic models ofS2 may be
more similar to those ofS than those ofS1. Since the mean
code-vectors are globally generated from the codebooks in-
cluding all different utterances of the speakers, we therefore

introduce the constant� in (16) for each cohort speaker in
order to fine-tune the fuzzy density with respect to the Eu-
clidean distance measure. At present we select the values of
� by means of the training data and will further discuss this
issue in the experimental section.

5. EXPERIMENTS

The commercial TI46 speech data corpus is used here for
the experiments. The TI46 corpus contains 46 utterances
spoken repeatedly by 8 female and 8 male speakers, labeled
f1-f8 and m1-m8, respectively. The vocabulary contains a
set of 10 computer commands:fenter, erase, go, help, no,
rubout, repeat, stop, start, yesg. Each speaker repeated the
words 10 times in a single training session, and then again
twice in each of 8 testing sessions. The corpus is sampled
at 12500 samples/s and 12 bits/sample. The data were pro-
cessed in 20.48 ms frames at a frame rate at 125 frames/s.
The frames were Hamming windowed and preemphasized
with �=0.9. 46 mel-spectral bands of a width of 110 mel
and 20 mel-frequency cepstral coefficients (MFCC) were
determined for each frame.

In the training session, each speaker's 100 training to-
kens (10 utterances x 1 training session x 10 repetitions)
were used to train the speaker-based VQ codebook by clus-
tering the set of all the speakers' MFCC into codebooks of
32, 64 and 128 codewords using the LBG algorithm [12].

The verification was tested in the text-dependent mode.
Since both the geometric mean and the fuzzy fusion meth-
ods operate on the principle of integration and depend on
the size of the cohort set, we therefore compare the per-
formances of these two methods. This is a closed set test
as the cohort speakers in the trainig are the same as those
in the testing. For the purpose of comparison and due to
a limited number of speakers, we select for each claimed
speaker a cohort set of three (same gender) whose acous-
tic models are closest to the claimed model. In the testing
mode, each cohort speaker's 160 test tokens (10 utterances
x 8 testing sessions x 2 repetitions) are tested againsteach
claimed speakers' 10-word models.

To identify the fuzzy densities for the cohort speakers,
we select the values of� by means of the training data. The
range of� was specified to be from 1 to 50, and a unit step
size was applied in the incremental trial process. It was ob-
served that using different values of� for different speakers
could give more reduction in the equal error rates. How-
ever, as an intial investigation we chose the same value for
each gender set, that is� = 10 for the female cohort set
and� = 1 for the male cohort set. As a result, Table 1
shows the mean equal-error rates for the 16 speakers with
three codebook sizes of 32, 64 and 128 entries. The total
average EER reductions by the fuzzy fusion (FF) in com-
parison with the geometric mean (GM) for the three code-



book sizes of 32, 64 and 128 are (5.87-4.20)= 1.67%, (4.23-
3.17)= 1.06%, (3.53-2.66)= 0.87%, respectively. Through
these results, it can be seen that the speaker verification sys-
tem using the fuzzy fusion is more favorable than using the
geometric mean method.

Table 1. Equal error rates (%EERs) for the 16 speakers
using geometric mean (GM) and fuzzy fusion (FF)

GM FF
Codebook Size Codebook Size

Speaker 32 64 128 32 64 128
f1 4.17 3.01 2.40 1.80 1.19 1.19
f2 5.98 1.19 1.79 1.19 0.60 1.20
f3 9.90 5.66 3.67 7.79 3.70 2.33
f4 0.00 0.00 0.00 0.00 0.00 0.00
f5 1.78 1.78 0.59 1.19 0.60 0.00
f6 6.67 3.01 1.80 2.41 0.59 0.00
f7 7.38 4.32 3.61 6.48 4.00 2.30
f8 12.76 9.73 9.22 10.05 8.22 7.62
m1 3.07 3.05 3.06 3.03 3.03 2.43
m2 4.17 1.28 1.22 3.14 1.22 1.22
m3 7.03 7.00 6.32 6.87 6.85 5.92
m4 10.77 8.28 7.90 8.29 6.89 6.91
m5 2.70 2.44 1.80 1.62 0.63 1.19
m6 8.43 7.44 6.53 7.53 5.47 4.72
m7 7.18 5.88 4.83 6.86 4.88 3.65
m8 1.83 3.01 2.40 1.80 1.21 1.19

Female 6.08 3.66 2.89 3.50 2.48 1.92
Male 5.65 4.80 4.17 4.89 3.86 3.40
Total 5.87 4.23 3.53 4.20 3.17 2.66

6. CONCLUSIONS

A fusion algorithm based on the fuzzy integral has been
proposed and implemented in the similarity normalization
for speaker verification. The the experimental results show
that the application of the proposed method is superior to
that of the conventional normalization. The key difference
between the two methods is that the assumption of equal
likelihood is not necessary for the fuzzy integral based nor-
malization due to the concept of the fuzzy measure. One
important issue arising here for further investigation is the
optimal identification of the fuzzy densities in terms of the
constant�, which can offer flexibility and have great effect
in the fuzzy fusion. Similar work on this fuzzy fusion for
numeral recognition was discussed in [13]. At present, the
fuzzy densities were only determined based on a rough es-
timate of the values for� using a small range of integers.
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