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ABSTRACT
A nonlinear probabilistic model of the relaxation labeling
(RL) process is implemented in the speaker identification
task in order to disambiguate the labeling of the speech fea-
ture vectors. Identification rates using the RL are higher
than those using the conventional VQ (vector quantization)
method.

1. INTRODUCTION

Speaker recognition is one of the challenging areas of speech
research and has many applications including telecommuni-
cations, robotics, security systems, database management,
command-and-control, and others. Speaker recognition is
a generic term which refers to the classification of speak-
ers based on their speech characteristics. This general task
can be subdivided into two categories: speakeridentifica-
tion and speakerverification. There are a number of tech-
niques for speaker identification such as the speaker-based
VQ codebook approach, dynamic time warping, discrete
hidden Markov models, neural networks, and others [2,4].
Among these, the VQ codebook approach is one of the most
popular methods implemented in many speaker recognition
systems as it limits the computational complexity and offers
good performance. While the VQ approach has been com-
monly used for speech and speaker recognition, it is not al-
ways effective because the ambiguity inherently existing in
the labeling of speech input tokens is treated in an inflex-
ible way by its deterministic rules. Basing our motivation
on this reason, we propose an improved algorithm over the
speaker-based VQ codebook approach using the relaxation
labeling [9] in which the deterministic classification of the
VQ-based approach is only an initial process of the proba-
bilistic labeling. Results from this initial labeling will then
be updated until convergence is reached.

2. SPEAKER-BASED VQ CODEBOOK APPROACH

For speaker identification based on VQ codebook approach
[10], the codebook foreach speaker is generated by clus-

tering a set of training feature vectorsfv1; v2; � � � ; vTg and
partitioningthe feature vector spacefS1; S2; � � � ; SJgwhere
each partition Sj is represented by a centroid vectorbj .
There areN codebooks generated forN speakers. In the
testing, the distortion between a set of testing feature vec-
torsfv1; v2; � � � ; vLg and each codebook is to be measured,
then an average distortionDi to theith codebook is taken:
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1

L
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j

d(vl; bj); j = 1; 2; � � � ; J (1)

whered(vl; bj) is the distortionmeasure (usually a Euclidean
distance) between two vectorsvl andbj.

The recognized speakeri� is then decided by taking the
minimum of theN resultant average distortion measures:

i
� = argmin

i
Di; i = 1; 2; � � �; N: (2)

3. RELAXATION LABELING

Let a set of objectsA = fa1; a2; � � � ; ang and a set of labels
� = f�1; �2; � � � ; �mg. An initial probability is given to
each objectai, i = 1; :::; n, having each label�, which is
denoted aspi(�). These probabilities satisfy the condition:X

�2�

pi(�) = 1; 8ai 2 A; 0 � pi(�) � 1: (3)

The relaxation labeling updates the probabilitiespi(�)
in (3) using a set of compatibility coefficientsrij(�; �0),
whererij(�; �0) : � � � 7! [�1; 1], whose magnitude de-
notes the strength of compatibility. The meaning of these
compatibility coefficients can be interpreted as follows:

rij(�; �
0)

8<
:

< 0 : �; �0 are incompatible forai andaj
= 0 : �; �0 are independent forai andaj
> 0 : �; �0 are compatible forai andaj

(4)
The updating factor for the estimatepi(�) at kth itera-

tion is
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wheredij are the parameters that weight the contributions
to ai coming from its neighborsaj , and subject toX

j

dij = 1: (6)

The updated probabilityp(k+1)i (�) for objectai is given
by
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Thus, the iterative process given by (5) and (7) establish
the relaxation labeling, and it is stopped when convergence
is achieved. It now becomes clear that for a successful per-
formance of the relaxation process, the initial label prob-
abilities and the compatibility coefficients need to be well
determined. Wrong estimates of these parameters will lead
to algorithmic instabilities.

Two possible methods for computing the compatibil-
ity coefficients are based on those developed by Peleg and
Rosenfeld [7]. The two methods employ the concepts of sta-
tistical correlation and mutual information. The correlation
based estimate of the compatibility coefficients is defined
by

rij(�; �
0) =

P
i [pi(�)� �p(�)] [pj(�

0)� �p(�0)]

�(�)�(�0)
(8)

wherepj(�0) is the probability ofaj having label�0, and
aj be the neighbors ofai, �p(�0) is the mean ofpj(�0) for
all aj , and�(�0) is the standard deviation ofpj(�0). To
alleviate the effect of dominance among labels, the modified
coefficients are

r
�
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0) (9)

The mutual-information based estimate of the compati-
bility coefficients is

rij(�; �
0) = log

n
P

i pi(�)pj(�
0)P

i pi(�)
P

i pi(�
0)

(10)

where, for the present problem,n is the number of feature
vectors of an unknown speaker. The compatibility coeffi-
cients in (10) are divided by 5 in order to take values in the
range [-1, 1].

4. RELAXATION LABELING FOR SPEAKER
IDENTIFICATION

For the classification of speech samples from anunknown
speaker to the best fit out of a population of speakers, some
sets of feature vectors characterizing the variabilities of dif-
ferent speakers are likely to overlap; therefore, in the spirit
of relaxation labeling, each feature vector is considered as

an objectai 2 A whereA is a set of feature vectors of
a speaker, and each speaker is considered as a label� in
the speaker population�. We will discuss how to estimate
the initial probabilities, how to effectively implement the
relaxation labeling process by Rosenfeldet al. [9] for the
problem of speaker identification, and we also outline this
proposed algorithm in the following subsections.

4.1. Estimation of initial probabilities

Using the VQ distortion measures, the initial probability
that expresses the local measurement of a vectorai belong-
ing to a speaker� can be estimated as

pi(�)
(0) =

exp(�Di�)P
� exp(�Di�)

(11)

in whichDi� is the minimum distortion measure between
ai and the set of codewords of speaker�, that is

Di� = min
k

[D(ai; bk(�)]; k = 1; 2; � � � ;K

whereK is the codebook size.

4.2. Implementation of the RL process

In the case of image analysis, it is important to consider the
confidence contributions from pixels lying in the neighbor-
hood of a pixel, as itsm-connected neighboring pixels may
belong to different regions. Therefore, the resulting weight
of the pixel is strongly affected by the confidence weights of
its neighborhood. However, for speech analysis, it is known
that the set of speech feature vectorsfaig (each vectorai
is equivalent to an image pixel) is to belong to a certain
speaker�. Therefore, there is no need to consider the con-
tributionsof its adjacent vectors. On the other hand, we only
consider the compatibility of the vectorfaig itself with re-
spect to speaker� and speaker�0. With this argument, the
original compatibility coefficients as defined in (4) can be
expressed in another form as

rii(�; �
0) = ri(�; �

0)

8<
:

< 0 : �; �0 are incompatible forai
= 0 : �; �0 are independent forai
> 0 : �; �0 are compatible forai

(12)
Following the above reason, the updating factor for the

estimatepi(�) atkth iteration is rewritten as follows:
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where the summation ofdij as defined in (5) is now omit-
ted as the contributions from the adjacent vectors are not
considered.



We assume that the majority of the speech feature vec-
torsai well belong to the speaker�, ie. the amount of the
feature vectors having overlapping properties is less than
that of the feature vectors having more distinctive proper-
ties. If this assumption is true, then the compatibility coef-
ficientsri(�; �0) tend to be negative as� and�0 are incom-
patible forfaig. This also leads to a negative value for the
updating factorq(k)i (�) in (13), which is defined in terms of
the compatibility coefficients. From this standpoint, if the
equation (7) is used for updating the probability, then the
confidence for a distinctive or overlapping vectorai belong-
ing to the speaker� will be decreased or increased instead
of being increased or decreased, respectively. Therefore, the
plus sign in (7) should become a minus sign, that is
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We rewrite the computations of the compatibility coef-
ficients according to equation (12) as follows. For the cor-
relation based estimate of the compatibility coefficients:

ri(�; �
0) =

P
i [pi(�)� �p(�)] [pi(�

0)� �p(�0)]
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wherepi(�0) is the probability ofai having label�0, �p(�0)
is the mean ofpi(�0) for all ai, and�(�0) is the standard
deviation ofpi(�0). And the modified coefficients becomes

r
�

i (�; �
0) = [1� �p(�)] [1� �p(�0)] ri(�; �
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Finally, the mutual-information based estimate of the com-
patibility coefficients is now rewritten as
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5. EXPERIMENTS

Both VQ codebook approach and relaxation labeling (RL)
were simulated and tested with a set of computer commands
from the TI46 speech data corpus. The TI46 corpus contains
46 utterances spoken repeatedly by 8 female and 8 male
speakers, labeled f1-f8 and m1-m8, respectively. The vo-
cabulary contains a set of 10 computer commands:fenter,
erase, go, help, no, rubout, repeat, stop, start, yesg. Each
speaker repeated the words 10 times in a single training ses-
sion, and then again twice in each of 8 testing sessions. The
corpus is sampled at 12500 samples/s and 12 bits/sample.
The data were processed in 20.48 ms frames at a frame
rate at 125 frames/s. The frames were Hamming windowed
and preemphasized with�=0.9. 46 mel-spectral bands of a
width of 110 mel and 20 mel-frequency cepstral coefficients
(MFCC) were determined for each frame. In the training

session, using the LBG algorithm [5], each speaker's 100
training tokens (10 utterances x 1 training session x 10 rep-
etitions) were used to train the speaker-based VQ codebook
by clustering the set of all the speakers' MFCC into code-
books of 32, 64 and 128 codewords. The speaker identifica-
tion was tested in the text-dependent mode. Each speaker's
160 test tokens (10 utterances x 8 testing sessions x 2 repe-
titions) were tested against all speakers' 10-word models.

For the codebook of 32 entries, the average error rates
for speaker identification are shown in Table 1, where for:
VQ = 15.02%, RL1 = 8.45 % (RL using correlation-based
compatibility coefficients be denoted as RL1), and RL2 =
8.02 % (RL using mutual-information-based compatibility
coefficients be denoted as RL2). For the codebook of 64
entries, the average error rates for speaker identification are
(Table 2): VQ = 11.00 %, RL1 = 5.97 %, and RL2 = 5.74
%. Finally, for the codebook of 128 entries, the average
error rates for speaker identification are (Table 3): VQ =
8.72 %, RL1 = 3.90 %, and RL2 = 3.35 %.

It is observed that for the three codebook sizes both VQ
and RL methods give similar results when the recognition
rates are high as in the case of the female speakers (f1-f8).
However, both RL1 and RL2 significantly improve the re-
sults when the VQ approach yields the low recognition rates
as it can be seen in the case of the male speakers. Gener-
ally, using the RL algorithms the error rates are reduced by
half in comparison with those using the VQ approach for all
three codebook sizes.

Table 1. Identification rates (%) and average errors (%)
using VQ and RL with codebook size of 32

Speaker VQ RL1 RL2
f1 95.62 95.62 93.12
f2 98.75 98.75 98.75
f3 84.38 87.50 83.12
f4 98.75 98.12 98.75
f5 100 99.38 99.38
f6 98.75 98.12 97.50
f7 95.62 91.88 90.00
f8 96.25 97.50 96.88
m1 79.61 90.79 91.45
m2 78.12 94.38 96.88
m3 99.36 100 99.36
m4 93.55 94.84 91.61
m5 96.18 94.90 95.54
m6 40.88 69.18 83.65
m7 48.12 76.25 83.12
m8 55.62 77.50 72.50

Average 84.98 91.55 91.98
Av. Error 15.02 8.45 8.02



Table 2. Identification rates (%) and average errors (%)
using VQ and RL with codebook size of 64

Speaker VQ RL1 RL2
f1 95.62 97.50 96.25
f2 100 99.38 98.75
f3 91.25 88.12 86.25
f4 99.38 99.38 99.38
f5 100 100 100
f6 100 100 99.38
f7 96.25 96.25 94.38
f8 98.75 100 99.38
m1 76.97 92.76 92.76
m2 88.75 96.25 97.50
m3 99.36 100 99.36
m4 98.06 98.71 97.42
m5 98.09 96.18 95.54
m6 40.88 74.84 84.91
m7 73.75 86.88 90.62
m8 66.88 78.12 76.25

Average 89.00 94.03 94.26
Av. Error 11.00 5.97 5.74

Table 3. Identification rates (%) and average errors (%)
using VQ and RL with codebook size of 128

Speaker VQ RL1 RL2
f1 97.50 98.75 98.75
f2 100 100 100
f3 94.38 94.38 94.38
f4 100 100 100
f5 100 100 100
f6 100 100 100
f7 98.12 96.88 98.75
f8 98.75 99.38 99.38
m1 78.29 92.76 93.42
m2 90.62 97.50 97.50
m3 99.36 100 100
m4 99.35 99.35 98.71
m5 99.36 100 100
m6 51.57 77.36 84.28
m7 77.50 92.50 93.12
m8 75.00 88.75 88.12

Average 91.28 96.10 96.65
Av. Error 8.72 3.90 3.35

6. CONCLUSIONS

A relaxation labeling algorithm has been presented for solv-
ing classification problem in the speaker identification task.
The flexibility embedded in the framework of relaxation la-
beling as well as the improved experimental results appear
to be promising as a new approach for speech research. In

fact we have also reported a successful application of this re-
laxation labeling to the task of speaker verification [8]. Even
such promising results have been presented, what has been
discussed here is an early step of applying the relaxation
algorithms to speaker recognition, therefore further study
with other proposed relaxation methods [1, 3, 6] should be
encouraged in order to fully explore the power of the re-
laxation labeling that can offer to the field of speech and
speaker recognition.
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