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ABSTRACT tering a set of training feature vectofs;, vs, - - -, vy} and
A nonlinear probabilistic model of the relaxation labeling partitioningthe feature vector spagg;, S, - - -, Sy} where
(RL) process is implemented in the speaker identification each pdition .S; is represented by a centroid vectpr.
task in order to disambiguate the labeling of the speech fea-There areN codebooks generated fof speakers. In the
ture vectors. Identification rates using the RL are higher testing, the distortion between a set of testing feature vec-

than those using the conventional VQ (vector quantization) tors{vy, vs, - - -, vz } and each codmok is to be measured,
method. then an average distortidn; to theith codebook is taken:
L
1 ) )
1. INTRODUCTION Dy == mind(v,by), j=1,2,---J (1)
L =1 I

Speaker recognitionis one of the challenging areaseseip  \yhered (v, b;) is the distortion measure (usually a Euclidean
research and has many applications including telecomm“n"distance) between two vectarsandb;.
cations, robotics, security systems, database management, The recognized speakéris then decided by taking the

command-and-control, and others. Speaker recognition isminimum of the' resultant average distortion measures:
a generic term which refers to the classification of speak-

ers based on their speech characteristics. This general task " = arg miin Dy, i=1,2,--,N. (2)
can be subdivided into two categories: spedkentifica-

tion and speakeverification There are a number of tech- 3. RELAXATION LABELING

nigues for speaker identification such as the speaker-based

VQ codebook approach, dynamic time warping, discrete Let a set of objectsl = {a1, a», - - -, a,, } and a set of labels
hidden Markov models, neural networks, and others [2,4]. A = {)\;,X2,---, \,n}. An initial probability is given to

Among these, the VQ codebook approach is one of the mosteach object;, i = 1, ..., n, having each label, which is
popular methods implemented in many speaker recognitiondenoted ag; (A). These probabilities satisfy the condition:
systems as it limits the computational complexity and offers

good performance. While the VQ approach has been com- Zpi(/\) =1 Vaed 0<p(A) <l @)
monly used for speech and speakeiogagtion, it is not al- AEA

ways effective because the ambiguity inherently existingin ~ The relaxation labeling updates the probabilitiesh)

the labeling of speecmput tokens is treated in an inflex- in (3) using a set of compatibility coefficients; (A, X'),

ible way by its deterministic rules. Basing our motivation wherer;;(A, X) : A x A — [—1, 1], whose magnitude de-
on this reason, we propose an improved algorithm over thenotes the strength of compatibility. The meaning of these
speaker-based VQ codebook approach using the relaxatioompatibility coefficients can be interpreted as follows:

labeling [9] in which the deterministic classification of the <0 : A\ areincompatible for; anda;

VQ-based approach is only an initial process of the proba- . AL =0 - /\’ )\ are independent fm,landa !

bilistic labeling. Results from this initial labeling will then """ >0 - \ \ are compatible foa»landa ?
A i y

be updated until convergence &ached. (4)

The updating factor for the estimate(\) at kth itera-
2. SPEAKER-BASED VQ CODEBOOK APPROACH tionis

For speaker identification based on VQ codebook approach g M) = Z dij Z ris (A, N)plEI (V) (5)
[10], the codebook foeach speaker is generated by clus- B N !



whered;; are the parameters that weight the contributions an objecta; € A where A is a set of feature vectors of

to a; coming from its neighbors;, and subject to a speaker, and each speaker is considered as aXabel
the speaker populatioh. We will discuss how to estimate
Zdij =1 (6) the initial probabilities, how to effectively implement the
j relaxation labeling process by Rosenfeldal. [9] for the

problem of speaker identification, and we also outline this
The updated probabiligyék“)(/\) for objecta; is given proposed algorithm in the following subsections.
by

(k) (k) . . I _—
D () pi (M +q¢7 (V)] (7) 4.1 Estimation of initial probabilities

k k
20 pl(' )(/\)[1 + ql( )(/\)] Using the VQ distortion measures, the initial probability

Thus, the iterative process given by (5) and (7) establishthat expresses the local measurement of a vegtbelong-
the relaxation labeling, and it is stopped when convergenceing to a speakek can be estimated as
is achieved. It now becomes clear that for a successful per-
formance of the relaxation process, the initial label prob- _exp(=Diy)
abilities and the compatibility coefficients need to be well - >0, exp(—Diy)
determined. Wrong estimates of these parameters will lead
to algorithmic instabilities. in which D;, is the minimum distortion measure between

Two possible methods for computing the compatibil- @; and the set of codewords of speakethat is
ity coefficients are based on those developed by Peleg and ) i
Rosenfeld [7]. The two methods employ the concepts of sta- Dixn = i [D(ai, bg(N)], k=1,2,--- K
tistical correlation and mutual information. The correlation
based estimate of the compatibility coefficients is defined whereK is the codebook size.

by

pi(M) (11)

- Y, 4.2. Implementation of the RL process
o) = S i) UIEE\/;ET]([/Z\)f)(A) LE0)

In the case of image analysis, it is important to consider the
o - . . confidence contributions from pixels lying in the neighbor-
wherep; (X') is the probai?lht/y ofa; having label ; and hood of a pixel, as its»-connected neighboring pixels may
a; be the nelgbbpfs of;, p(X') is the mean Ofuj(j\ ) for belong to different regions. Therefore, the resulting weight
all a;, ando (') is the standard deviation gf;(\'). To  ofthe pixel is strongly affected by the confidence weights of
alleviate the effect of dominance among labels, the modifieditg neighborhood. However, for epch analysis, it is known
coefficients are that the set of speech feature vectéus} (each vectom;
. N ~ o , is equivalent to an image pixel) is to belong to a certain
rigAA) = L= PV = (W) (A AT (9) speaken. Therefore, there is no need to consider the con-
The mutual-information based estimate of the compati- trlbut.lons of its adjacgn't.vectors. Onthe other han'd, we only
bility coefficients is consider the compatibility of the vectér; } itself with re-
spect to speakex and speakeh’. With this argument, the

, ny . pi(A)p;(N) original compatibility coefficients as defined in (4) can be
rij(A, ) = log ; (10) di ther f
S () s pi(Y) expressed in another form as
where, for the present problem,is the number of feature <0 : A X areincompatible foa;
vectors of an unknown speaker. The compatibility coeffi- 7;; (A, A') = (A, X)X =0 : A X areindependent far;
cients in (10) are divided by 5 in order to take values in the >0 : A X are compatible fou,
range [-1, 1]. 12)
Following the above reason, the updating factor for the
4. RELAXATION LABELING FOR SPEAKER estimatep; (A) at kth iteration is rewritten as follows:
IDENTIFICATION
IPVES O )Pl 13
For the classification of speech samples fronuaknown ) [; rid ADp (Y) (13)

speaker to the best fit out of a population of speakers, some

sets of feature vectors characterizing the variabilities of dif- where the summation ef;; as defined in (5) is now omit-
ferent speakers are likely to overlap; therefore, in the spirit ted as the contributions from the adjacent vectors are not
of relaxation labeling, each feature vector is considered asconsidered.



We assume that the majority of the speech feature vec-session, using the LBG algorithm [5], each speaker's 100
torsa; well belong to the speake, ie. the amount of the  training tokens (10 utterances x 1 training session x 10 rep-
feature vectors having overlapping properties is less thanetitions) were used to train the speaker-based VQ codebook
that of the feature vectors having more distinctive proper- by clustering the set of all the speakers' MFCC into code-
ties. If this assumption is true, then the compatibility coef- books of 32, 64 and 128 codewords. The speaker identifica-
ficientsr; (A, \') tend to be negative asand\’ are incom- tion was tested in the text-dependent mode. Each speaker's
patible for{a;}. This also leads to a negative value for the 160 test tokens (10 utterances x 8 testing sessions x 2 repe-
updating factoql(k)(/\) in (13), which is defined in terms of  titions) were tested against all speakers’ 10-word models.
the compatibility coefficients. From this standpoint, if the For the codebook of 32 entries, the average error rates
equation (7) is used for updating the probability, then the for speaker identification are shown in Table 1, where for:
confidence for a distinctive or overlapping vecigbelong- VQ = 15.02%, RL1 = 8.45 % (RL using correlation-based
ing to the speakek will be decreased or increased instead compatibility coefficients be denoted as RL1), and RL2 =
of being increased or decreased, respectively. Therefore, thé&.02 % (RL using mutual-information-based compatibility

plus sign in (7) should become a minus sign, that is coefficients be denoted as RL2). For the codebook of 64
entries, the average error rates for speaker identification are
(+1) (3 — pg’”( A1 = ¢® ] 14) (Table 2): VQ = 11.00 %, RL1 = 5.97 %, and RL2 = 5.74

ZAP (/\)[ _ q(k)(/\)] %. Finally, for the codebook of 128 entries, the average
' error rates for speaker identification are (Table 3): VQ =
We rewrite the computations of the compatibility coef- 8.72 %, RL1 = 3.90 %, and RL2 = 3.35 %.
ficients according to equation (12) as follows. For the cor- Itis observed that for the three codebook sizes both VQ
relation based estimate of the compatibility coefficients: ~ and RL methods give similar results when the recognition
rates are high as in the case of the female speakers (f1-f8).
X = 2 [Pi(A) = p(W)] [pi (V) = p(X)] (15) However, both RL1 and RL2 significantly improve the re-
a(A)a(N) sults when the VQ approach yields the low recognition rates
as it can be seen in the case of the male speakers. Gener-
ally, using the RL algorithms the error rates are reduced by
half in comparison with those using the VQ approach for all
three codebook sizes.

wherep;(X') is the probability ofz; having label\', p(X)
is the mean of; (V') for all a;, ando(X) is the standard
deviation ofp; (\’). And the modified coefficients becomes

ri (A X)) = [1=pW] L= p(V)]ri (A, X) (16)
Table 1. Identification rates (%) and average errors (%)

Finally, the mutual-information based estimate of the com- using VQ and RL with codebook size of 32
patibility coefficients is now rewritten as
. Y Speaker VQ RL1 RL2

ri(AN) = log Z ilmp : Q;, (17) fl 9562 9562 93.12
2PN 2 (V) f2 9875 98.75 98.75
f3 84.38 87.50 83.12
5. EXPERIMENTS f4 98.75 98.12 98.75
Both VQ codebook approach and relaxation labeling (RL) ;2 918935 gzsig 33:;80
were simulated and tested with a set of computer commands £7 95.62 91.88 90.00
from the T146 speech data corpus. The TI46 corpus contains f8 96.25 9750 96.88
46 utterances spoken repeatedly by 8 female and 8 male mi 7961 90.79 91.45

speakers, labeled f1-f8 and m1-m8, respectively. The vo- m2 7812 9438 96.88
cabulary contains a set of 10 computer commar{@stter, m3 99.36 100 99.36
erase go, help, no, rubout repeat stop start, yeg. Each ma 9355 9484 9161
speaker repeated the words 10 times in a single training ses- m5 06.18 9490 95.54
sion, and then again twice in each of 8 testing sessions. The mé6 40.88 6918 83.65
corpus is sampled at 12500 samples/s and 12 bits/sample. m7 4812 76.25 83.12
The data were processed in 20.48 ms frames at a frame ms 5562 77.50 72.50
rate at 125 framgs/s. The frames were Hamming windowed Average 84.98 9155 91.98
and preemphasized with=0.9. 46 mel-spectral bands of a AV Error 1502 845 802

width of 110 mel and 20 mel-frequency cepstral coefficients - : : :
(MFCC) were determined for each frame. In the training




Table 2. Identification rates (%) and average errors (%)
using VQ and RL with codebook size of 64

Speaker VQ RL1 RL2
fl 95.62 97.50 96.25
f2 100 99.38 98.75
f3 91.25 88.12 86.25
f4 99.38 99.38 99.38
5 100 100 100
f6 100 100 99.38
f7 96.25 96.25 94.38
8 98.75 100 99.38
ml 76.97 92.76 92.76
m2 88.75 96.25 97.50
m3 99.36 100 99.36
m4 98.06 98.71 97.42
m5 98.09 96.18 95.54
m6 40.88 74.84 84.91
m7 73.75 86.88 90.62
m8 66.88 78.12 76.25

Average 89.00 94.03 94.26

Av. Error 11.00 5.97 5.74

Table 3. Identification rates (%) and average errors (%)
using VQ and RL with codebook size of 128

Speaker VQ RL1 RL2
fl 97.50 98.75 98.75
f2 100 100 100
f3 94.38 94.38 94.38
f4 100 100 100
5 100 100 100
f6 100 100 100
f7 98.12 96.88 98.75
8 98.75 99.38 99.38
ml 78.29 92.76 93.42
m2 90.62 97.50 97.50
m3 99.36 100 100
m4 99.35 99.35 098.71
m5 99.36 100 100
m6 51.57 77.36 84.28
m7 7750 9250 93.12
m8 75.00 88.75 88.12

Average 91.28 96.10 96.65

Av. Error 8.72 390 3.35

6. CONCLUSIONS

A relaxation labeling algorithm has been presented for solv-
ing classification problem in the speaker identification task.
The flexibility embedded in the framework of relaxation la-

beling as well as the improved experimental results appear

fact we have also reported a successful application of this re-
laxation labeling to the task of speaker verification [8]. Even
such promising results have been presented, what has been
discussed here is an early step of applying the relaxation
algorithms to speaker recognition, therefore further study
with other proposed relaxation methods [1, 3, 6] should be
encouraged in order to fully explore the power of the re-
laxation labeling that can offer to the field of speech and
speaker recognition.
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