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ABSTRACT

This paper proposes a new approach to state duration modeling
for HMM-based speech synthesis. A set of state durations of each
phoneme HMM is modeled by a multi-dimensional Gaussian dis-
tribution, and duration models are clustered using a decision tree
based context clustering technique. In the synthesis stage, state
durations are determined by using the state duration models. In
this paper, we take account of contextual factors such as stress-
related factors and locational factors in addition to phone identity
factors. Experimental results show that we can synthesize good
quality speech with natural timing, and the speaking rate can be
varied easily.

1. INTRODUCTION

For any text-to-speech synthesis system, controlling timing of the
events in the speech signal is one of the difficult problems since
there are many contextual factors (e.g., phone identity factors,
stress-related factors, locational factors) that affect timing. Fur-
thermore some factors affecting duration interact with one an-
other. Recently, there have been proposed some approaches to
controlling timing using statistical models such as linear regres-
sion [1], tree regression [2], MSR [3] which extends both linear
and tree regressions, and sums-of-products model [4]. By using
these techniques, rhythm and tempo of speech were successfully
controlled with a small amount of free parameters.

On the other hand, we have proposed an HMM-based speech
synthesis system in which the sequence of spectra is modeled
by phoneme HMMs [5]. This synthesis system can synthesize
speech with various voice characteristics by using a speaker adap-
tation technique [6], [7] or a speaker interpolation technique [8].

In this paper, we propose a new approach to controlling rhythm
and tempo for the HMM-based speech synthesis system. In this
approach, rhythm and tempo are controlled by state duration den-
sities. State durations of each phoneme HMM is modeled by
a multi-dimensional Gaussian distribution. Duration models are
clustered using a decision tree based context clustering technique
[10]. In the synthesis stage, state durations which maximize the
state duration probability are determined from the state duration
models and the total length of speech.

Since state durations are modeled by continuous distributions, our
approach has the following advantages:

� The speaking rate of synthetic speech can be varied easily.

� There is no need for label boundaries when appropriate ini-
tial models are available since the state duration densities
are estimated in the embedded training stage of phoneme
HMMs.
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Figure 1: Speech synthesis system.

� Speaker individuality of synthetic speech can be varied by
applying a speaker adaptation technique or a speaker inter-
polation technique to the HMMs and their state duration
models.

In the following, we summarize the HMM-based speech synthesis
system, and describe the technique for state duration modeling in
Sections 2 and 3, respectively. Experimental results and discus-
sions are also given in Section 4.

2. HMM-BASED SPEECH SYNTHESIS
SYSTEM

The synthesis part of the HMM-based text-to-speech synthesis
system is shown in Fig. 1.

HMMs and their duration models are context dependent models,
where contextual factors which affect both spectra and state dura-
tions are taken into account.

In the training part, first, mel-cepstral coefficients are obtained
from speech database using a mel-cepstral analysis technique [9],
and delta coefficients are also calculated. Context dependent HMMs
are trained using obtained coefficients. Using a decision-tree based
context clustering technique [10], states of the context dependent
HMMs are clustered, and the tied context dependent HMMs are



reestimated with the embedded training. Simultaneously, state
durations are calculated on the trellis which is obtained in the
embedded training stage, and modeled by Gaussian distributions.
Finally, context dependent duration models are clustered by using
the decision-tree based context clustering technique.

In the synthesis part, an arbitrarily given text to be synthesized
is converted to a context-based label sequence. Then a sentence
HMM is constructed by concatenating context dependent HMMs
according to the label sequence. State durations of the sentence
HMM are determined from the total length of speechT and the
state duration densities. According to the obtained state durations,
a sequence of mel-cepstral coefficients is generated from the sen-
tence HMM by using a speech parameter generation algorithm
[11], [12]. Finally, speech is synthesized from the generated mel-
cepstral coefficients by the MLSA (Mel Log Spectrum Approxi-
mation) filter [9],[13].

3. STATE DURATION MODELING

In the HMM-based speech synthesis system described above, state
duration densities were modeled by single Gaussian distributions
estimated from histograms of state durations which were obtained
by the Viterbi segmentation of training data. In this procedure,
however, it is impossible to obtain variances of distributions for
phonemes which appear only once in the training data.

In this paper, to overcome this problem, Gaussian distributions of
state durations are calculated on the trellis which is made in the
embedded training stage. State durations of each phoneme HMM
are regarded as a multi-dimensional observation, and the set of
state durations of each phoneme HMM is modeled by a multi-
dimensional Gaussian distribution. Dimension of state duration
densities is equal to number of state of HMMs, andnth dimen-
sion of state duration densities is corresponding tonth state of
HMMs1.

In the following sections, we describe training and clustering of
state duration models, and determination of state duration in the
synthesis part.

3.1. Training of State Duration Models

There have been proposed techniques for training HMMs and
their state duration densities simultaneously, however, these tech-
niques is inefficient because it requires huge storage and compu-
tational load. From this point of view, we adopt another technique
for training state duration models.

State duration densities are estimated on the trellis which is ob-
tained in the embedded training stage. The mean�(i) and the
variance�2(i) of duration density of statei are determined by
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1We assume the left-to-right model with no skip.

respectively, where�t0;t1 (i) is the probability of occupying state
i from timet0 to t1 and can be written as

�t0;t1(i) = (1� 
t0�1(i)) �

t1Y
t=t0


t(i) � (1� 
t1+1(i)); (3)

where
t(i) is the occupation probability of statei at timet, and
we define


�1(i) = 
T+1(i) = 0.

3.2. Decision-Tree Based Context Clustering

There are many combinations of contextual factors which affect
duration such as phone identity factors, stress-related factors and
locational factors. When we construct the state duration models
taking account of many combinations of contextual factors, we
expect to be able to obtain duration models which can predict nat-
ural timing accurately. However, as contextual factors increase,
their combinations also increase exponentially. Therefore, model
parameters with sufficient accuracy can not be estimated with lim-
ited training data. Furthermore, it is impossible to prepare speech
database which includes all combinations of contextual factors;
unseen contexts can not be prepared.

To overcome this problem, duration models are clustered using
a decision-tree based context clustering technique. The decision
tree is a binary tree, and in its each node, a question which splits
contexts into two groups is prepared. All contexts can be found by
traversing the tree, starting from the root node then selecting the
next node depending upon the answer to a question about the cur-
rent context. Therefore, if once the decision tree is constructed,
unseen contexts can be prepared.

Our duration modeling technique using the decision tree is similar
to the technique using CART [2]. Though the technique using
CART can predict duration accurately, it can not control speaking
rate easily because a discrete value is assigned to a leaf of the
tree. In our approach, it is possible to control the speaking rate
by assigning a multi-dimensional Gaussian distribution to a leaf
of the tree.

3.3. Determination of State Duration

For a given speech lengthT , the goal is to obtain a state sequence
q = fq1; q2; � � � ; qT g which maximize

log P (qj�; T ) =

KX
k=1

log pk(dk) (4)

under the constraint

T =

KX
k=1

dk; (5)

wherepk(dk) is the probability of durationdk in statek, andK
is the number of states in HMM�.

Since each duration densitypk(dk) is modeled by a single Gaus-
sian distribution, state durationsfdkgKk=1 which maximize (4) are
given by

dk = �(k) + � � �2(k) (6)
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where�(k) and�2(k) are the mean and variance of the duration
density of statek, respectively.
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Figure 2: Decision tree for HMMs (1st state).
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Figure 3: Decision tree for state duration models.

Since� is associated withT in (7), the speaking rate can be con-
trolled by � instead ofT . From (6), it can be seen that to syn-
thesize speech with average speaking rate,� should be set to0,
that is,T =

PK

k=1
�(k), and the speaking rate becomes faster or

slower when we set� to negative or positive value, respectively.
It can also be seen that the variance�

2(k) represents “elasticity”
of kth state duration.

4. EXPERIMENTS

We used phonetically balanced 450 sentences from ATR Japanese
speech database for training. Speech signals were sampled at
16kHz and windowed by a 25ms Blackman window with a 5ms
shift, and then mel-cepstral coefficients were obtained by the mel-
cepstral analysis. Feature vectors consisted of 25 mel-cepstral
coefficients including the 0th coefficient, and their delta coeffi-
cients. We used 5-state left-to-right HMMs with single diagonal
Gaussian output distributions.

Decision-tree based context clustering was applied to a set of con-
text dependent HMMs. Then we estimated context dependent
state duration models and applied context clustering to them. Fol-
lowing contextual factors which affect both spectra and state du-
rations were taken into account:

� mora2 count of sentence

2A mora is a syllable-sized unit consisting of (consonant+) vowel.

� position of breath group in sentence
� mora count offpreceding, current, succeedingg breath group
� position of current accentual phrase in current breath group
� mora count and accent type offpreceding, current, succeedingg

accentual phrase
� fpreceding, current, succeedingg part of speech
� position of current phoneme in current accentual phrase
� fpreceding, current, succeedingg phoneme

The resultant set of HMMs and state duration models had 3,030
states and 2,984 distributions, respectively.

Examples of the decision tree for HMMs and their duration mod-
els are shown in Figs. 2 and 3, respectively. In these figures,
“L �” and “R �” represent “preceding” and “succeeding”, respec-
tively. “silence” represents silence of head and tail of a sentence
or pause. “Laccenttype<= 10” represents that the accent type
of a preceding accentual phrase is from type zero to type ten.
From these figures, with regard to spectra, it is seen that all mod-
els are much affected by phonetic identity. On the other hand,
with regard to state duration, it can be seen that silence and pause
models are much affected by accentual phrase and part-of-speech,
and the other models are much affected by phonetic identity.

Fig. 4 shows generated spectra for a Japanese sentence which is
not included in the training data, setting� to �0:1, 0, 0:1. Only
the part corresponding to the first phrase “/t-o-k-a-i-d-e-w-a/”,
which means “in a city” in English, is shown in this figure. From
the figure, it can be seen that some parts such as stationary parts of
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Figure 4: Generated spectra for an utterance “/t-o-k-a-i-d-e-w-a/” with different speaking rates
(top :� = �0:1, middle :� = 0, bottom :� = 0:1).

vowels have elastic durations, and other parts such as explosives
have fixed durations. From informal listening tests, we found that
synthetic speech had a good quality with natural timing. Further-
more, we confirmed that synthetic speech could keep natural tim-
ing even if its speaking rate was changed in some degree.

5. CONCLUSION

In this paper, we described a state duration modeling technique
for HMM-based speech synthesis, and constructed state duration
models in which contextual factors that affect durations are taken
into account. We synthesized speech using the constructed state
duration models. As a results, we found that we can synthesize
speech with natural timing and can control the speaking rate of
the synthetic speech.

Future work will be directed towards investigation of contextual
factors and conditions of the context clustering, and evaluation
of synthetic speech. Building speech synthesis system which can
deal with spectra, pitch [14], [15] and state duration in a unified
framework, and synthesizing speech with various voice character-
istics by applying speaker adaptation [6], [7] and speaker interpo-
lation [8] techniques, are also our future works.
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