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ABSTRACT

Context Dependent:
Duration Models
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This paper proposes a new approach to state duration modeli

for HMM-based speech synthesis. A set of state durations of eagﬁleﬁMD,\jge"dem ‘,8%8
phoneme HMM is modeled by a multi-dimensional Gaussian dis-
tribution, and duration models are clustered using a decision tree :
based context clustering technique. In the synthesis stage, statedynthesis
durations are determined by using the state duration models. In . . , i ,
this paper, we take account of contextual factors such as stress- — pensities I\ AN JL e VAR

-

related factors and locational factors in addition to phone identity Sentence

factors. Experimental results show that we can synthesize good  Hwm %@88"888"888
d: d . .

guality speech with natural timing, and the speaking rate can be
varied easily. | State Duration

. . +— TorP
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1. INTRODUCTION ‘ |

For any text-to-speech synthesis system, controlling timing of the

events in the speech signal is one of the difficult problems since *

there are many contextual factors (e.g., phone identity factors,

stress-related factors, locational factors) that affect timing. Fur-

thermore some factors affecting duration interact with one an-

other. Recently, there have been proposed some approaches to

controlling timing using statistical models such as linear regres-

sion [1], tree regression [2], MSR [3] which extends both linear

and tree regressions, and sums-of-products model [4]. By using o ] ) )

these techniques, rhythm and tempo of speech were successfully ® Speaker individuality of synthetic speech can be varied by

controlled with a small amount of free parameters. applying a speaker adaptation technique or a speaker inter-
polation technique to the HMMs and their state duration

On the other hand, we have proposed an HMM-based speech ~ models.

synthesis system in which the sequence of spectra is modeled

by phoneme HMMs [S]. This synthesis system can synthesizg he following, we summarize the HMM-based speech synthesis
speech with various voice characteristics by using a speaker ad@yxiem, and describe the technique for state duration modeling in
tation technique [6], [7] or a speaker interpolation technique [8].Sections 2 and 3, respectively. Experimental results and discus-
r%ions are also given in Section 4.

Figure 1: Speech synthesis system.

In this paper, we propose a new approach to controlling rhyth
and tempo for the HMM-based speech synthesis system. In this

approach, rhythm and tempo are controlled by state duration den-2, HMM-BASED SPEECH SYNTHESIS

sities. State durations of each phoneme HMM is modeled by SYSTEM

a multi-dimensional Gaussian distribution. Duration models are

clustered using a decision tree based context clustering technique . .
[10]. In the synthesis stage, state durations which maximize th'€ Synthesis part of the HMM-based text-to-speech synthesis
state duration probability are determined from the state duratictyStem is shown in Fig. 1.

models and the total length of speech. . )
9 P HMMs and their duration models are context dependent models,

Since state durations are modeled by continuous distributions, ojf€re contextual factors which affect both spectra and state dura-
approach has the following advantages: tions are taken into account.

. . . _ln the training part, first, mel-cepstral coefficients are obtained
e The speaking rate of synthetic speech can be varied easitygm speech database using a mel-cepstral analysis technique [9],
e There is no need for label boundaries when appropriate inand delta coefficients are also calculated. Context dependent HMMs
tial models are available since the state duration densitiege trained using obtained coefficients. Using a decision-tree based
are estimated in the embedded training stage of phonengentext clustering technique [10], states of the context dependent
HMMs. HMMs are clustered, and the tied context dependent HMMs are



reestimated with the embedded training. Simultaneously, statespectively, whergq, ¢, (%) is the probability of occupying state
durations are calculated on the trellis which is obtained in théfrom timet, to ¢; and can be written as
embedded training stage, and modeled by Gaussian distributions.

Finally, context dependent duration models are clustered by using . . al ) )
the decision-tree based context clustering technique. Xto.t1 (1) = (1 = y-1(4)) - H Ye(@) - (L=, 41(2), (3)
t=tg

In the synthesis part, an arbitrarily given text to be synthesized . . . .

is converted to a context-based label sequence. Then a senteWérey:(¢) is the occupation probability of stateat timet, and
HMM is constructed by concatenating context dependent HMM¥e definey_ (i) = yr41(i) = 0.

according to the label sequence. State durations of the sentence

HMM are determined from the total length of speéCtand the 3 2. Decision-Tree Based Context Clustering
state duration densities. According to the obtained state durations,

a sequence of mel-cepstral coefficients is generated from the Sefjere are many combinations of contextual factors which affect
tence HMM by using a speech parameter generation algorithgyration such as phone identity factors, stress-related factors and
[11], [12]. Finally, speech is synthesized from the generated melycational factors. When we construct the state duration models
cepstral coefficients by the MLSA (Mel Log Spectrum ApproXi-taking account of many combinations of contextual factors, we

mation) filter [9],[13]. expect to be able to obtain duration models which can predict nat-
ural timing accurately. However, as contextual factors increase,
3. STATE DURATION MODELING their combinations also increase exponentially. Therefore, model

parameters with sufficient accuracy can not be estimated with lim-
In the HMM-based speech synthesis system described above, sigé training data. Furthermore, it is impossible to prepare speech
duration densities were modeled by single Gaussian distributiofigtabase which includes all combinations of contextual factors;
estimated from histograms of state durations which were obtainédiseen contexts can not be prepared.
by the Viterbi segmentation of training data. In this procedure

however, it is impossible to obtain variances of distributions forf© overcome this problem, duration models are clustered using
phonemes which appear only once in the training data. a decision-tree based context clustering technique. The decision

tree is a binary tree, and in its each node, a question which splits
In this paper, to overcome this problem, Gaussian distributions §Pntexts into two groups is prepared. All contexts can be found by
state durations are calculated on the trellis which is made in tHgaversing the tree, starting from the root node then selecting the
embedded training stage. State durations of each phoneme HMMXt node depending upon the answer to a question about the cur-
are regarded as a multi-dimensional observation, and the setféft context. Therefore, if once the decision tree is constructed,
state durations of each phoneme HMM is modeled by a multHnseen contexts can be prepared.
dimensional Gaussian distribution. Dimension of state duration ) ) ) ) . o
densities is equal to number of state of HMMs, artl dimen- Our duration modeling technique using the decision tree is similar

sion of state duration densities is correspondingtio state of t0 the technique using CART [2]. Though the technique using
HMMsL. CART can predict duration accurately, it can not control speaking

rate easily because a discrete value is assigned to a leaf of the
In the following sections, we describe training and clustering off - In our approach, it is possible to control the speaking rate

state duration models, and determination of state duration in tﬁ’%’ assigning a multi-dimensional Gaussian distribution to a leaf
synthesis part. of the tree.

3.1. Training of State Duration Models 3.3. Determination of State Duration

There have been proposed techniques for training HMMs arfcPr @ given speech lengif, the goal is to obtain a state sequence
their state duration densities simultaneously, however, these te¢h= {a1, 42, -+, gr} which maximize
niques is inefficient because it requires huge storage and compu-

K

tational load. From this point of view, we adopt another technique

for training state duration models. log P(q|A,T) = Z log i (di) 4
k=1

State duration densities are estimated on the trellis which is ob- .
tained in the embedded training stage. The mgdh and the Binder the constraint

K
variances? (7) of duration density of stateare determined by T = Z ds, (5)
T T k=1
Z Z Xto.t1 (8)(t1 — to + 1) wherepy, (dy) is the probability of duratioml}, in statek, and K
. to=1t1=tg is the number of states in HMM.
£i) = 2 , &)
Z Z (i) Since each duration density,(d,) is modeled by a single Gaus-
Xtootr sian distribution, state duratiofid;, }/—, which maximize (4) are
fo=tt1=to given by
T T
D 2
D> Xuon ()t —to +1) de = &k)+p-o°(k) (6)
o) = =B -£3),

p

(T—Z&(k)) Y ok, @
k=1 k=1

whereg (k) ando?(k) are the mean and variance of the duration
1we assume the left-to-right model with no skip. density of state:, respectively.

Z Z Xto,t1 (4)

to=1t1=tg
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Figure 2: Decision tree for HMMs (1st state)
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Figure 3: Decision tree for state duration models.

Sincep is associated witl" in (7), the speaking rate can be con- e position of breath group in sentence

trolled by p instead ofT". From (6), it can be seen that to syn- e mora count of preceding, current, succeedingreath group
thesize speech with average speaking ratshould be set t0, e position of current accentual phrase in current breath group
thatis, T = Z w—1 £(k), and the speaking rate becomes faster or e mora countand accent type{greceding, current, succeeding
slower when we seg to negative or positive value, respectively. accentual phrase

It can also be seen that the variancgk) represents “elasticity” e {preceding, current, succeedjngart of speech

of kth state duration. e position of current phoneme in current accentual phrase

{preceding, current, succeedinghoneme

4. EXPERIMENTS The resultant set of HMMs and state duration models had 3,030

We used phonetically balanced 450 sentences from ATR Japané&%tes and 2,984 distributions, respectively.

igﬁﬁm dgtabase fo(rj tbl’alnll’;% Sglsecl? S|gnalsdwere tsﬁmr,z_’ledE%mples of the decision tree for HMMs and their duration mod-
Z and windowed Dby & 2oms Blackman window with a Is are shown in Figs. 2 and 3, respectively. In these figures,

shift, and then mel-cepstral coefficients were obtained by the me [+ and “R_+" represent “preceding” and “succeeding’, respec-

cepstral analysis. Feature vectors consisted of 25 mel- cepstﬁ%ly “silence” represents silence of head and tail of a sentence
coefficients including the Oth coefficient, and their delta coeffi r pause. “Laccenttype <— 10 represents that the accent type
g:ﬂfsi:r\{eoﬁfedt g_stta}éetl_eft -to-right HMMs with single dlagonagf a preceding accentual phrase is from type zero to type ten.

put distributions. From these figures, with regard to spectra, it is seen that all mod-
Is are much affected by phonetic identity. On the other hand,
{'th regard to state duration, it can be seen that silence and pause
odels are much affected by accentual phrase and part-of-speech,
ind the other models are much affected by phonetic identity.

Decision-tree based context clustering was applied to a set of cq
text dependent HMMs. Then we estimated context depende
state duration models and applied context clustering to them. F
lowing contextual factors which affect both spectra and state d

rations were taken into account: Fig. 4 shows generated spectra for a Japanese sentence which is

not included in the training data, settipgo —0.1, 0, 0.1. Only
e mord count of sentence the part correspondlng to the first phraged-k-a-i-d-e-w-a/",
which means “in a city” in English, is shown in this figure. From
2A mora is a syllable-sized unit consisting of (consorgnowel. the figure, it can be seen that some parts such as stationary parts of
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Figure 4: Generated spectra for an utteranfted-k-a-i-d-e-w-a/” with different speaking rates
(top :p = —0.1, middle :p = 0, bottom :p = 0.1).

5. CONCLUSION

In this paper, we described a state duration modeling technique
for HMM-based speech synthesis, and constructed state duration
models in which contextual factors that affect durations are taken

into account. We synthesized speech using the constructed state 8.
duration models. As a results, we found that we can synthesize
speech with natural timing and can control the speaking rate of
the synthetic speech.

Future work will be directed towards investigation of contextual
factors and conditions of the context clustering, and evaluation
of synthetic speech. Building speech synthesis system which can
deal with spectra, pitch [14], [15] and state duration in a unified
framework, and synthesizing speech with various voice character-
istics by applying speaker adaptation [6], [7] and speaker interpo-
lation [8] techniques, are also our future works.
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