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ABSTRACT technique. First results are presented here of experiments
performed to define an NN design and a phonetically explicit

Feature representations mediating between acoustic input Jﬁa‘“fe matrix for English and French.

symbolic representation promise to reduce learning time
needed for automatic speech signal segmentation. Sir, 1211 5:1, 1221

Experiments are reported that circumscribe acoustic inputs 561,123
and appropriate feature sets for neural network (NN) training. IJFi: -2, 1250]
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1. INTRODUCTION
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The phonetic sciences are centrally concerned with the
relationship between linguistic and acoustic representations
of speech. This generally means establishing systematic and ' .
explicit relationships between the elements of a phonetic [
chain and corresponding acoustic segments in a speech
signal.
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Despite considerable advances in understanding articulatory
and acoustic relationships mediating between these levels off
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representation, the structure required for inducing the
phonetic representation from a given speech signal remains ‘
in part indeterminate (a given symbol can be represented by Ll | . . L
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different acoustic states, and vice versa), and in other respects
obscure (a symbol can not always be related to identifiable ) . o .
acoustic information, or vice versa). This has proven Ggure 1. Segmentation by identification of points of
handicap in speech recognition (the “phoneme recognitidi@ximal spectral change. Top: segment of signal taken from
problem”) as well as in segmenting and labelling the speedhe word “arbitrage” /-ritraZ-/. 2nd from top: wide-band
signal automatically (the “phoneme matching problem”), apectrogram. 3rd from top: spectral changes. Bottom: Points
handicap that has traditionally been overcome by Markoviasf maximal spectral change.

statistical modelling of LPC or cepstral coefficients derived

fror_n the_ signal. On the basis o_f substantial learning and 12/ METHOD

taking into account preceding and current acoustiC

information, falrly reliable pl’edictions can be madez 1 The Segmentatlon Procedure
concerning the likely phonetic representation of the "™~

acoustical segment under consideration. The segmentation procedure proceeds in five steps:

The information required for statistical identification can bg1) Segmentation512-point FFT spectra obtained from pre-
considerable, since it is proportional to the number of stategnphasis and hamming window-processed signals are
to be distinguished. Other parameters being held constantcHiculated at 1-ms intervals for the entire signal, to produce
a (mythical) language distinguished only two phonemeshe numeric equivalent of a narrow-band spectrogram. A 30-
relevant acoustic information could easily be related ta0 ms window (depending on speech rate) is passed over the
phonetic symbols. But solving the identification orspectrogram, and auditorily weighted average vectors are
matching problem in typical human languages impliegalculated for the left and right halves of the window. At the
learning many more states and constraints between staig$adow’s midpoint, cumulative squared and amplitude-
which in turn leads to considerable delays between the ons@éighted differences between the left and the right halves of
of learning and the point where the recognition or matchingie window are calculated over all spectral rays. These
problems can begin to be solved with any degree of successjifferences identify points of maximal change in the

Improvements can be expected if an intermediat%pectrogram and serve to establish potential points of

representation between the acoustical signal and the phonesttlegmentatlon (Figure 1).

symbol can be assumed, i.e., if feature representations can(pgAcoustic parametersinput parameters were derived
found to reliably mediate between symbolic and acoustigirectly from the signal as well as from a non-uniform filter
states. The learning problem can then be simplified, arghnk based on the spectrogram and defined with eleven non-
perhaps more importantly, be explicated in terms of morgverlapping spectral bands (cf. [1] p. 91). Bands are delimited
direct — and hopefully more intuitively comprehensible —yy the first 22 bands of the Bark scale, where each spectral

relationships between signal and featufEsis is the pand corresponds to two Bark scale bands. (Originally, a
approach we pursued in a NN-driven speech segmentation



more traditional 22-band filter based on the Bark scale was o o

used, but was found to exhibit insufficient generalisability if\COUStic input parameters2reliminary analyses had
steps 3 and 4.) On this basis, the following parameters wetdggested that each acoustic parameter of the base
identified for each segment: (a) duration, (dpbal conflg.uratlon had |ndep.enQ¢nt contrllbutlng va]ue. By
amplitude, (c) global amplitude slope, (d) onset amplitudémoving each parameter individually, this was confirmed. In
slope, (e) average f0, (f) fO slope; plus for each spectral barRprticular, all three types of spectral band information

(g) average amplitude, (h) overall amplitude slope and (Bontributed grucially to learnability: relaj[ive amplitude,
onset amplitude slope. All acoustic parameters aré/erall amplitude slope and onset amplitude slope. The

standardised to thet1.0 range, with reference to thedeneral slope designates the ratio between averaged relative

parameter's values over the entire spectrogram. amplitudes in the initial third and the last third of the
segment’s measures. Onset slope is the ratio between of the

(3) Training. On the basis of a minimum of 500 hand-verifiedfirst and the second sixths of such measures. Learning proved
and phonetically labelled segments, relationships betweémpossible when each of these parameters served as the sole
the acoustic parameters and 23 binary phonetic features (ssgut to the NN, or even when only two parameters were
below) are learned by a Quickprop algorithm (essentially, theombined. All three parameters were required to permit
BP program by Don Tweter, available from http://learning in the base configuration.

www.unidial.com/~drt). The current base configuration o ) . )
defines 7 hidden nodes, a number arrived at by observing thanguage Generalisation. Thease configuration for English

network’s learning behaviour (see below) as well as by 4@ also tested on the French data set (Table I). The NN
principal components analysis. Learning ends when tHearned data from French at least as easily as from English.

0.999 criterion is reached. for both data and bootstrap sets. TABLE I: NN MANIPULATIONS
(4) Testing.For a new signal, speech segments are identified Average Ratio 10 Maximum
by step 1, and hypothetical binary features are calculated from number of base number of
the acoustic parameters derived in step 2 and the weights terations  configu- iterations
calculated in step 3. From the hypothetical featuréSBASE CONFIGURATION 289 1.0 803
hypothetical segment labels are constituted.
HIDDEN NODES
(5) Matching. Time-warping relates expected feature bundles}® 233 o-aa a3
derived from the phonetic symbols to the hypothetical feature 306 1.06 1997
bundles obtained in steps 1-4. Expected durations ar% 5513?1 i-gg 1333
calculated for phonetic segments, and a matching pro¢ess 825 585 >4000
attempts to infer the phonetic symbol associated with each
iri i ACOUSTIC INPUT
empirically determined segment. Amplitude only 2847 0.85 4000
Overall slope only 2624 9.08 >4000
. . : Onset slope only 2625 9.08 >4000
2.2. Experiments in NN Design Amplitude + overall slope 1249 432 54000
AmpIitltIJd? + onset sIoptle 1208 4.18 >4000
i i i Overall slope + onset slope 886 3.07 >4000
Experlmen_ts w:ere perfo_r_m?d to arrive at a flr_st stgble I\INAmplitude Y overall slope + 289 1.00 503
configuration. “Learnability” was defined as iterations 10  onset slope
criterion averaged over the set of 23 features and in terms dfll except duration 520 1.80 >4000
h . b £ . Th kK h All except avg. fO 349 1.21 1048
the maXImum num C er 0 |te|’at|0n5.. e_ netWOl’I a tSA” except f0 slope . 394 1.36 1288
learning after 4000 iterations, at which point learning wasﬁ” excer)g globa;' amplltlllde 3433?4 %El)g igg%
; ; : i : : except onset amp. slope .
considered impossible under the given configuration. All except global amp. slope 359 1924 1038
The base configuratioas described above and a feature matfix{aNGUAGE
as defined below were assumed. Only the parameter(s) undénglish 289 1.00 803
consideration was/were manipulated. The base NN was a fuly=rench 206 0.71 413

connected quickprop network with 39 acoustic input nodes, L .
seven hidden nodes, and binary output nodes. Each of the233. Current Deficiencies

features was trained separately. )
At each step, the procedure is exposed to errors. Current work

Training data consisted of 1000 English and 1000 Frenclis directed at identifying and suppressing such errors through
segments in distinctly articulated individual words and shofurther development, iterative experiments and adjustments.
phrases, recorded from a talented multilingual female speak&he main areas of investigation are the following:
The corpus was segmented using the procedure described
above and segmentations were manually verified1) Segmentation errorsin addition to identifying “real”
Experiments were run primarily on the English data, exceg€gment boundaries, the procedure also identifies phonetic
for the language manipulation noted below (Table ). changes that are not related to a symbolic segment boundary.
This tends to occur at periods of rapid formant change, in the
The number of hidden nodess varied from 10 to 5, in order Middle of fricatives, or at slow transitions between sounds,
to determine the lowest number of nodes capable of reliapihere the spectrogram exhibits periods of little acoustic
learning. Lower numbers of nodes are favoured in order gergy. Also, expected segment boundaries are sometimes
further the network’s genera”sation Capacity. Ano_t .|d.ent|f|ed in the aCOUSFlC mat.er!al, because the two
configuration with seven hidden nodes showed particularigdjoining sounds are acoustically similar (e.ge-invent”)
good performance in comparison with configurations wittor because articulation is indistinct. Currently, such errors are
either more or fewer hidden nodes. Learning provedorrected manually. An automatised correction procedure is
impossible at five or fewer nodes. envisageable.



. e vowels and as ALVEOLAR for consonants, the association
(2) Feature |dent|f|cat_|on _errorsSo_me (e.g., yowel) features ou1d be learned easily (less than 500 iterations each).
depend on acoustic information that is contextually

dependent and is thus not structured in the same mannerAgsa consequence of this experimentation, three groups of
acoustic information for the same feature in another segmestunds were distinguished: vowels + semivowels, non-
In such cases, the NN often identifies an erroneous segmefnicative consonants, and fricative consonants. The status of
Currently, many such errors are corrected in the matching steprtain sounds is language-specific. French fricative /r/ is
(5). Further improvements are expected through the use loést grouped with the fricative consonants, while the English
contextual information. rolled /r/ is best associated with the semi-vowels.

(3) Matching errors.The results of the time warp are affected2. Markedness.Most group-specific features behave as
by the precision of durations predicted for the transcribetidentifiers” or “markers”. For example, the feature +HIGH
phonetic string. If segments are predicted much before or afidentifies the vowels /i:/ and /u:/. All other sounds (vowels as
the time that they are actually found in the signal, correstell as consonants) are marked -HIGH. This type of
matching is nearly impossible. The current model predicspecification is learned easily, and it suggests that acoustic
durations on the basis of average verified segment duratiom$ormation in specific bands (e.g., for HIGH, relatively high
which limits matching performance to single words or worenergy in the below-1 kHz bands) are the relevant predictors
groups. Future work will be directed at improving theof the marked features. Absence of this type of acoustic

durational prediction. information is interpreted by the network as an absence of
marking, and thus permits correct switching of the binary
3. THE FEATURE MATRIX feature.
o . 3. Groups of feature statesMany binary features are best
3.1. Deflnlng the matrix defined as mutually exclusive statesgroups of states. For

) example, high-low or front-back distinctions for vowels are
Performance in the current system depends largely on thest defined in terms of mutually exclusive feature
phonetic feature matrix employed. Features that are difficuljctivations” (e.g, FRONT - CENTRE - BACK, or HIGH -
to learn show low generalisability, while those that are easilpPEN - MID - LOW). In other systems, such features would be
learned tend to show greater reliability in generalisatiorgonsidered to be multivalued (e.g., HEIGHT 1-4). Some other
Also, some features are easier to link to acoustic input thggatures, on the other hand, are clearly binary (e.g., VOICED,
others. Finally and in contrast to traditional phonetidNASAL). A special case is presented byditive features
teaching, a matrix consisting of fewer features is NQgjating to fricative sounds. For sounds suchSf /Z/, the

necessarily better for segmentation than a matrix th?rLgation band extends upwards from lower points in the
employs many features, since a large, non-redundant feat%Fnectrum than that for sounds such as /s/ and /z/. Yet in the
nmoant_rlr)édcl)JfrEzgsmm”c]);?ri)((j|st|nctlveness than a smaller, equal igher parts of the spectrum (e.g., above about 4 kistzh

: groups show strong fricative noise. Consequently, non-

Over a lengthy (but non-exhaustive) set of experiments, tigxclusive +SHARP features states are specified for all
link between features and spectral information was optimisediembers of the fricative set, while onlg//and Z/ are
Base NN configuration and training procedures as describedditionally marked by a +STRIDENT feature. The fricative
above were used. Feature definitions for input segments wegture +GRAVE is reserved for the English souridsahd D/

varied, and a redefinition of features was attempted if tIWhich exhibit quite a different fricative behaviour. The sound

association between acoustic input data and binary feat%g finally. is +FRICATIVE but receives no further markin
could not be learned in 1000 iterations or less. Subsequent; to inaty. | . LV . ng,

each redefinition, the network was retrained. Redefinition anI View of its generally weak acoustic frication.
retraining continued until three conditions were met: (1) each
phonetic symbol in the English and French symbol set w#k. CONCLUSION
uniquely defined, (2) English and French feature definitions

for comparable sounds were identical, (3) each feature could ie€xperiments involving NN learning of relations between
learned in less than 1000 iterations. acoustic input and phonetic features, a stable NN

configuration was identified. It consists of a fully connected
. . . NN with inputs from 11 spectral bands, fO, amplitude and
3.2. Results of matrix manipulations duration, 7 hidden nodes and output nodes for 23 binary

The following principles emerged (Figure 2): features.

1's A few feat | t to th i Design experiments showed that relations between simple
1. ScopeA tew features are relevant to the entire segmellyq ira| parameters and features could be learned in few
inventory, while most are relevant only to certain groups q

o . erations (accuracy has not been assessed systematically yet-
sounds. Voicing and nasality can be successfull ( y y vy

S : X ; . Of particular surprise was the crucial contributionstiipe
distinguished in both consonants and vowels (nasality fQf¢ . naiion (overall slopes as well as onset slopes in
vowels was only tested in French). These features depend Sbctral band output, f0 and global amplitude). This
similar acoustic features in all segments, and th(:"|Fn‘ormation presumably codes a segment’s dynamic features

articulatory source is the rear of the vocal tract. By contragh) " grther experiments must establish if this design is
most other features are specific to either the vocalic or t perior or inferior to the more common LPC- or cepstrum-

consonantal domain. For example, the feature FRONT prov d ing desi 1 f t K 3
well-nigh impossible to learn (3200 iterations) when define sed preprocessing designs [1, for recent work, see e.g. 3].

with distinctive values for both vowels and consonantsthe matrix manipulation experiments led to stable and
When “frontness” was redefined as the feature FRONT fajompatible solutions for English and French, suggesting that



a segmentation system of this type can easily be expandecctdlaborative work in constituting the multilingual database
handle multiple languages. Additional performance gains atmder a contract from Swisscom.

expected from taking into account preceding and succeeding

acoustic information. Further testing will be directed at §. REFERENCES

greater number of subjects and speech styles, and at fully
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Figure 2. Current feature chart for English. Unstressed versions of vowels are not shown. The symbols [V] and [#] designate
preburst periods of voiced and unvoiced stops respectively. Experimentation still in progress. [Note: because of a hmitation i
Microsoft Word, the postscript version of this article does not show the phonetic symbols correctly. Please refer to the ASCII
equivalents.]



