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ABSTRACT

Feature representations mediating between acoustic input and
symbolic representation promise to reduce learning time
needed for automatic speech signal segmentation.
Experiments are reported that circumscribe acoustic inputs
and appropriate feature sets for neural network (NN) training.

1. INTRODUCTION

The phonetic sciences are centrally concerned with the
relationship between linguistic and acoustic representations
of speech. This generally means establishing systematic and
explicit relationships between the elements of a phonetic
chain and corresponding acoustic segments in a speech
signal.

Despite considerable advances in understanding articulatory
and acoustic relationships mediating between these levels of
representation, the structure required for inducing the
phonetic representation from a given speech signal remains
in part indeterminate (a given symbol can be represented by
different acoustic states, and vice versa), and in other respects
obscure (a symbol can not always be related to identifiable
acoustic information, or vice versa). This has proven a
handicap in speech recognition (the “phoneme recognition
problem”) as well as in segmenting and labelling the speech
signal automatically (the “phoneme matching problem”), a
handicap that has traditionally been overcome by Markovian
statistical modelling of LPC or cepstral coefficients derived
from the signal. On the basis of substantial learning and by
taking into account preceding and current acoustic
information, fairly reliable predictions can be made
concerning the likely phonetic representation of the
acoustical segment under consideration.

The information required for statistical identification can be
considerable, since it is proportional to the number of states
to be distinguished. Other parameters being held constant, if
a (mythical) language distinguished only two phonemes,
relevant acoustic information could easily be related to
phonetic symbols. But solving the identification or
matching problem in typical human languages implies
learning many more states and constraints between states,
which in turn leads to considerable delays between the onset
of learning and the point where the recognition or matching
problems can begin to be solved with any degree of success.

Improvements can be expected if an intermediate
representation between the acoustical signal and the phonetic
symbol can be assumed, i.e., if feature representations can be
found to reliably mediate between symbolic and acoustic
states. The learning problem can then be simplified, and
perhaps more importantly, be explicated in terms of more
direct — and hopefully more intuitively comprehensible —
relationships between signal and features. This is the
approach we pursued in a NN-driven speech segmentation

technique. First results are presented here of experiments
performed to define an NN design and a phonetically explicit
feature matrix for English and French.

Figure 1. Segmentation by identification of points of
maximal spectral change. Top: segment of signal taken from
the word “arbitrage” /-rbItraZ-/. 2nd from top: wide-band
spectrogram. 3rd from top: spectral changes. Bottom: Points
of maximal spectral change.

2. METHOD

2 . 1 . The Segmentation Procedure

The segmentation procedure proceeds in five steps:

(1) Segmentation. 512-point FFT spectra obtained from pre-
emphasis and hamming window-processed signals are
calculated at 1-ms intervals for the entire signal, to produce
the numeric equivalent of a narrow-band spectrogram. A 30-
40 ms window (depending on speech rate) is passed over the
spectrogram, and auditorily weighted average vectors are
calculated for the left and right halves of the window. At the
window’s midpoint, cumulative squared and amplitude-
weighted differences between the left and the right halves of
the window are calculated over all spectral rays. These
differences identify points of maximal change in the
spectrogram and serve to establish potential points of
segmentation (Figure 1).

(2) Acoustic parameters. Input parameters were derived
directly from the signal as well as from a non-uniform filter
bank based on the spectrogram and defined with eleven non-
overlapping spectral bands (cf. [1] p. 91). Bands are delimited
by the first 22 bands of the Bark scale, where each spectral
band corresponds to two Bark scale bands. (Originally, a



more traditional 22-band filter based on the Bark scale was
used, but was found to exhibit insufficient generalisability in
steps 3 and 4.) On this basis, the following parameters were
identified for each segment: (a) duration, (b) g loba l
amplitude, (c) global amplitude slope, (d) onset amplitude
slope, (e) average f0, (f) f0 slope; plus for each spectral band:
(g) average amplitude, (h) overall amplitude slope and (i)
onset amplitude slope. All acoustic parameters are
standardised to the ±1.0 range, with reference to the
parameter’s values over the entire spectrogram.

(3) Training. On the basis of a minimum of 500 hand-verified
and phonetically labelled segments, relationships between
the acoustic parameters and 23 binary phonetic features (see
below) are learned by a Quickprop algorithm (essentially, the
BP program by Don Tweter, available from http://
www.unidial.com/~drt). The current base configuration
defines 7 hidden nodes, a number arrived at by observing the
network’s learning behaviour (see below) as well as by a
principal components analysis. Learning ends when the
0.999 criterion is reached. for both data and bootstrap sets.

(4) Testing. For a new signal, speech segments are identified
by step 1, and hypothetical binary features are calculated from
the acoustic parameters derived in step 2 and the weights
calculated in step 3. From the hypothetical features,
hypothetical segment labels are constituted.

(5) Matching. Time-warping relates expected feature bundles
derived from the phonetic symbols to the hypothetical feature
bundles obtained in steps 1-4. Expected durations are
calculated for phonetic segments, and a matching process
attempts to infer the phonetic symbol associated with each
empirically determined segment.

2 . 2 . Experiments in NN Design

Experiments were performed to arrive at a first stable NN
configuration. “Learnability” was defined as iterations to
criterion averaged over the set of 23 features and in terms of
the maximum number of iterations. The network halts
learning after 4000 iterations, at which point learning was
considered impossible under the given configuration.

The base configuration as described above and a feature matrix
as defined below were assumed. Only the parameter(s) under
consideration was/were manipulated. The base NN was a fully-
connected quickprop network with 39 acoustic input nodes,
seven hidden nodes, and binary output nodes. Each of the 23
features was trained separately.

Training data consisted of 1000 English and 1000 French
segments in distinctly articulated individual words and short
phrases, recorded from a talented multilingual female speaker.
The corpus was segmented using the procedure described
above and segmentations were manually verified.
Experiments were run primarily on the English data, except
for the language manipulation noted below (Table I).

The number of hidden nodes was varied from 10 to 5, in order
to determine the lowest number of nodes capable of reliable
learning. Lower numbers of nodes are favoured in order to
further the network’s generalisation capacity. A
configuration with seven hidden nodes showed particularly
good performance in comparison with configurations with
either more or fewer hidden nodes. Learning proved
impossible at five or fewer nodes.

Acoustic input parameters. Preliminary analyses had
suggested that each acoustic parameter of the base
configuration had independent contributing value. By
removing each parameter individually, this was confirmed. In
particular, all three types of spectral band information
contributed crucially to learnability: relative amplitude,
overall amplitude slope and onset amplitude slope. The
general slope designates the ratio between averaged relative
amplitudes in the initial third and the last third of the
segment’s measures. Onset slope is the ratio between of the
first and the second sixths of such measures. Learning proved
impossible when each of these parameters served as the sole
input to the NN, or even when only two parameters were
combined. All three parameters were required to permit
learning in the base configuration.

Language Generalisation. The base configuration for English
was also tested on the French data set (Table I). The NN
learned data from French at least as easily as from English.

TABLE I: NN MANIPULATIONS

Average
number of
iterations

Ratio to
base

configu-
ration

Maximum
number of
iterations

BASE CONFIGURATION 289 1.0 803

HIDDEN NODES
1 0 213 0.74 711
9 236 0.82 563
8 306 1.06 1997
7 289 1.00 803
6 414 1.43 1267
5 825 2.85 >4000

ACOUSTIC INPUT
Amplitude only 2847 9.85 >4000
Overall slope only 2624 9.08 >4000
Onset slope only 2625 9.08 >4000
Amplitude + overall slope 1249 4.32 >4000
Amplitude + onset slope 1208 4.18 >4000
Overall slope + onset slope 886 3.07 >4000
Amplitude + overall slope +

onset slope
289 1.00 803

All except duration 520 1.80 >4000
All except avg. f0 349 1.21 1048
All except f0 slope 394 1.36 1288
All except global amplitude 333 1.15 1031
All except onset amp. slope 434 1.50 1787
All except global amp. slope 359 1.24 1038

LANGUAGE
English 289 1.00 803
French 206 0.71 413

2 . 3 . Current Deficiencies

At each step, the procedure is exposed to errors. Current work
is directed at identifying and suppressing such errors through
further development, iterative experiments and adjustments.
The main areas of investigation are the following:

(1) Segmentation errors. In addition to identifying “real”
segment boundaries, the procedure also identifies phonetic
changes that are not related to a symbolic segment boundary.
This tends to occur at periods of rapid formant change, in the
middle of fricatives, or at slow transitions between sounds,
where the spectrogram exhibits periods of little acoustic
energy. Also, expected segment boundaries are sometimes
not identified in the acoustic material, because the two
adjoining sounds are acoustically similar (e.g., “re-invent”)
or because articulation is indistinct. Currently, such errors are
corrected manually. An automatised correction procedure is
envisageable.



(2) Feature identification errors. Some (e.g., vowel) features
depend on acoustic information that is contextually
dependent and is thus not structured in the same manner as
acoustic information for the same feature in another segment.
In such cases, the NN often identifies an erroneous segment.
Currently, many such errors are corrected in the matching step
(5). Further improvements are expected through the use of
contextual information.

(3) Matching errors. The results of the time warp are affected
by the precision of durations predicted for the transcribed
phonetic string. If segments are predicted much before or after
the time that they are actually found in the signal, correct
matching is nearly impossible. The current model predicts
durations on the basis of average verified segment durations
which limits matching performance to single words or word
groups. Future work will be directed at improving the
durational prediction.

3. THE FEATURE MATRIX

3.1. Defining the matrix

Performance in the current system depends largely on the
phonetic feature matrix employed. Features that are difficult
to learn show low generalisability, while those that are easily
learned tend to show greater reliability in generalisation.
Also, some features are easier to link to acoustic input than
others. Finally and in contrast to traditional phonetic
teaching, a matrix consisting of fewer features is not
necessarily better for segmentation than a matrix that
employs many features, since a large, non-redundant feature
matrix offers more distinctiveness than a smaller, equally
non-redundant matrix.

Over a lengthy (but non-exhaustive) set of experiments, the
link between features and spectral information was optimised.
Base NN configuration and training procedures as described
above were used. Feature definitions for input segments were
varied, and a redefinition of features was attempted if the
association between acoustic input data and binary feature
could not be learned in 1000 iterations or less. Subsequent to
each redefinition, the network was retrained. Redefinition and
retraining continued until three conditions were met: (1) each
phonetic symbol in the English and French symbol set was
uniquely defined, (2) English and French feature definitions
for comparable sounds were identical, (3) each feature could be
learned in less than 1000 iterations.

3.2. Results of matrix manipulations

The following principles emerged (Figure 2):

1. Scope. A few features are relevant to the entire segment
inventory, while most are relevant only to certain groups of
sounds. Voicing and nasality can be successfully
distinguished in both consonants and vowels (nasality for
vowels was only tested in French). These features depend on
similar acoustic features in all segments, and their
articulatory source is the rear of the vocal tract. By contrast,
most other features are specific to either the vocalic or the
consonantal domain. For example, the feature FRONT proved
well-nigh impossible to learn (3200 iterations) when defined
with distinctive values for both vowels and consonants.
When “frontness” was redefined as the feature FRONT for

vowels and as ALVEOLAR for consonants, the association
could be learned easily (less than 500 iterations each).

As a consequence of this experimentation, three groups of
sounds were distinguished: vowels + semivowels, non-
fricative consonants, and fricative consonants. The status of
certain sounds is language-specific. French fricative /r/ is
best grouped with the fricative consonants, while the English
rolled /r/ is best associated with the semi-vowels.

2. Markedness. Most group-specific features behave as
“identifiers” or “markers”. For example, the feature +HIGH
identifies the vowels /i:/ and /u:/. All other sounds (vowels as
well as consonants) are marked -HIGH. This type of
specification is learned easily, and it suggests that acoustic
information in specific bands (e.g., for HIGH, relatively high
energy in the below-1 kHz bands) are the relevant predictors
of the marked features. Absence of this type of acoustic
information is interpreted by the network as an absence of
marking, and thus permits correct switching of the binary
feature.

3. Groups of feature states. Many binary features are best
defined as mutually exclusive states in groups of states. For
example, high-low or front-back distinctions for vowels are
best defined in terms of mutually exclusive feature
“activations” (e.g, FRONT - CENTRE - BACK, or HIGH -
OPEN - MID - LOW). In other systems, such features would be
considered to be multivalued (e.g., HEIGHT 1-4). Some other
features, on the other hand, are clearly binary (e.g., VOICED,
NASAL). A special case is presented by additive features
relating to fricative sounds. For sounds such as /S/ or /Z/, the
frication band extends upwards from lower points in the
spectrum than that for sounds such as /s/ and /z/. Yet in the
higher parts of the spectrum (e.g., above about 4 kHz), both
groups show strong fricative noise. Consequently, non-
exclusive +SHARP features states are specified for all
members of the fricative set, while only /S / and /Z/ are
additionally marked by a +STRIDENT feature. The fricative
feature +GRAVE is reserved for the English sounds /T/ and /D/
which exhibit quite a different fricative behaviour. The sound
/h/, finally, is +FRICATIVE but receives no further marking,
in view of its generally weak acoustic frication.

4. CONCLUSION

In experiments involving NN learning of relations between
acoustic input and phonetic features, a stable NN
configuration was identified. It consists of a fully connected
NN with inputs from 11 spectral bands, f0, amplitude and
duration, 7 hidden nodes and output nodes for 23 binary
features.

Design experiments showed that relations between simple
spectral parameters and features could be learned in few
iterations (accuracy has not been assessed systematically yet-
). Of particular surprise was the crucial contribution of slope
information (overall slopes as well as onset slopes in
spectral band output, f0 and global amplitude). This
information presumably codes a segment’s dynamic features
[2]. Further experiments must establish if this design is
superior or inferior to the more common LPC- or cepstrum-
based preprocessing designs [1, for recent work, see e.g. 3].

The matrix manipulation experiments led to stable and
compatible solutions for English and French, suggesting that



a segmentation system of this type can easily be expanded to
handle multiple languages. Additional performance gains are
expected from taking into account preceding and succeeding
acoustic information. Further testing will be directed at a
greater number of subjects and speech styles, and at fully
permuting the feature matrix in a stepwise procedure.
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ï 'i + + + + + — — — + — — — + — — — — — — — — — —

Ï 'I + + + — + — — — — + — — + — — — — — — — — — —

¨e 'e + + + + + — — — — + — — + — — — — — — — — — —

¨E 'E + + + — + — — — — — + — + — — — — — — — — — —

¨Q '& + + + — — + — — — — + — + — — — — — — — — — —

¨« '* + + + — — + — — — + — — + — — — — — — — — — —

¨a 'a + + + — — + — — — — — + + — — — — — — — — — —

¨A 'A + + + + — — + — — — — + + — — — — — — — — — —

¨ 'O + + + + — — + + — — + — + — — — — — — — — — —

¨o 'o + + + — — — + + — + — — + — — — — — — — — — —

¨U 'U + + + — — + — + — + — — + — — — — — — — — — —

¨u 'u + + + + — — + + + — — — + — — — — — — — — — —

w w + + + — — — — + + — — — — — — — — — — — — — —

j j + + + — — — — — + — — — — — — — — — — — — — —

l L + + + — — — — — + — — — — — — + — — — — — — —

r r + + + — — — + — + — — — — — — — + — — — — — —

p p + — — — — — — — — — — — — + + — — — — — — — —

b b + — + — — — — — — — — — — + + — — — — — — — —

f f + — — — — — — — — — — — — — + — — — — + — — —

v v + — + — — — — — — — — — — — + — — — — + — — —

m m + — + — — — — — — — — — — — + — — — + — — — —

t t + — — — — — — — — — — — — + — + — — — — — — —

d d + — + — — — — — — — — — — + — + — — — — — — —

T T + — — — — — — — — — — — — — — — — — — + — — +

D D + — + — — — — — — — — — — — — — — — — + — — +

s s + — — — — — — — — — — — — — — + — — — + — + —

z z + — + — — — — — — — — — — — — + — — — + — + —

S S + — — — — — — — — — — — — — — — + — — + + + —

Z Z + — + — — — — — — — — — — — — — + — — + + + —

n n + — + — — — — — — — — — — — — — + — + — — — —

k k + — — — — — — — — — — — — + — — — + — — — — —

g g + — + — — — — — — — — — — + — — — — — — — — —

h h + — — — — — — — — — — — — — — — — — — + — — —

N G + — + — — — — — — — — — — — — — — + + — — — —

x x + — — — — — — — — — — — — — — — — + — + + + +

? q + — — — — — — — — — — — — + — — — — — — — — —

V V + — + — — — — — — — — — — — — — — — — — — — —
# # — — — — — — — — — — — — — — — — — — — — — — —

Figure 2. Current feature chart for English. Unstressed versions of vowels are not shown. The symbols [V] and [#] designate
preburst periods of voiced and unvoiced stops respectively. Experimentation still in progress. [Note: because of a limitation in
Microsoft Word, the postscript version of this article does not show the phonetic symbols correctly. Please refer to the ASCII
equivalents.]


