
BEYOND STRUCTURED DIALOGUES:
FACTORING OUT GROUNDING

Peter A. Heeman, Michael Johnston, Justin Denney and Edward Kaiser

Computer Science and Engineering
Oregon Graduate Institute

PO Box 91000 Portland OR 97291
fheeman,johnston,jdenney,kaiser g@cse.ogi.edu

ABSTRACT
Structured dialogue models are currently the only tools for
easily building spoken dialogue systems. This approach,
however, requires the dialogue designer to completely spec-
ify all dialogue behavior between the user and system, in-
cluding how information isgroundedbetween the user and
the system. In this paper, we advocate factoring out the
grounding behavior from structured dialogue models by us-
ing a general purpose dialogue manager that accounts for
this behavior. This not only simplifies the specification
of dialogue, but also allows more powerful mechanisms of
grounding to be employed, which cannot be implemented
within the framework of structured dialogues.

1. INTRODUCTION

As speech recognition and speech synthesis continue to im-
prove, spoken dialogue systems have started to emerge.
However, significant barriers remain in building effective
spoken dialogue systems. There will always be errors in
speech recognition, and unfortunately, natural language un-
derstanding and dialogue processing are still quite limited
in dealing with such errors. Additionally, these technolo-
gies must deal with the large variability in the way users
express themselves in spontaneous speech. Hence, it will
be impossible to build a system that always understands ev-
erything that the user says. Instead, a usable system must
deal with its limited abilities in understanding the user. It
must collaborate with the user in order to reach mutual un-
derstanding of what the user said. This process is referred
to asgrounding[3, 2]. Conversants display their under-
standing (or lack of understanding) through such means as
paraphrasing, making the next relevant contribution, and
requesting clarifications or confirmations. We believe that
endowing a system with proper grounding mechanisms will
make it robust in dealing with limited domain and linguis-
tic knowledge and hence able to converse more effectively
and aid the user in accomplishing their goals.

2. STRUCTURED DIALOGUES
Structured dialogues, or finite state dialogue models, pro-
vide a formalism for building spoken dialogue systems. In

From?

To?

Did you say $to?

Departure Time?

Did you say $time?

Did you say $from? No

No

No

Figure 1: Structured dialogue model for train information

this approach, initiative is kept solely with the system: the
system directs the user through a predetermined network of
states to accomplish some task. Each state specifies a sys-
tem prompt and a set of allowed responses that the user can
make. The determination of the next state is a function of
the user’s response and the current state. Figure 1 gives a
simple structured subdialogue that allows the user to spec-
ify information for finding train information, namely the
destination city, the initial city, and the time that the train
leaves.

An advantage of structured dialogues is that the system
prompts encourage the user to say something from a lim-
ited set of possible responses [5, 12]. This simplifies speech
recognition and almost eliminates the need for natural lan-
guage processing. Structured dialogues also simplify the
dialogue management component, which is completely spec-
ified by the transitions. This technology has proved very
popular for building working systems, and the Center for

Spoken Language Understanding at the Oregon Graduate
Institute even provides a toolkit for building such systems
with this approach [11, 17]. Although such systems seem
overly restrictive for the user, Walkeret al. [19] found that
users preferred a system-initiative system over a mixed-
initiative system, probably due to the former giving more
reliable performance.

When designing a dialogue by means of a finite state di-
alogue model, the designer must account for all dialogue
behavior between the system and the user. As such, they
must hand-code the grounding behavior in the dialogue. As
a result, grounding is often achieved by asking the user to
explicitly verify the recognition and understanding results
of the system after each piece of information that the user
gives. This is shown in Figure 1 by the three verification
questions. Control loops back to the original query if the
user indicates that there was a misunderstanding. Another
approach to dealing with misunderstandings is to add ar-
bitrary commands, such as “scratch that”, which users can
utter if they think that a misrecognition or misunderstand-
ing occurred, which will undo the last operation, or “clear
history”, which will completely reset the system [22].

A second aspect of dialogue that complicates the specifica-
tion of a structured dialogue model is that there are many
different ways that a speaker might want to break what they
want to say into individualcontributionsfor grounding. For
the task of specifying criteria about a train, the user might
want to specify the destination, origin and time in a single
utterance (e.g. “I want to go to Portland from Chicago at 5
p.m.”), or break it down into some combination of contribu-
tions, such as first presenting the destination and origin and
then presenting the time (e.g. “u: I want to go to Portland
from Chicago. s: At what time? u: At 5 p.m.”). The way
speakers break this down depends on a number of factors,
such as “minimization of collaborative effort” [3]. Allow-
ing for all possible contribution patterns for a contribution
will add to the complexity of the dialogue structure, mak-
ing it difficult and laborious to create, edit and maintain.
Hence, this variability is typically not supported. Rather,
the structured dialogue model prompts the user for a spe-
cific ordering of the information as shown in Figure 1.

3. RICHER DIALOGUE MODELS

There are other alternatives to the structured dialogue para-
digm. Much work has been done on plan-based models
(e.g. [9, 8]) and rational agency theories (e.g. [4, 13]). How-
ever, these approaches take the opposite approach from struc-
tured dialogues. Such systems aim to understand anything
that the user might say about the domain. As such, they re-
quire a large amount of linguistic and domain information
along with powerful reasoning capabilities in order to func-
tion. Moving these research theories into working applica-
tion systems has been extremely difficult. In fact, of the
work mentioned above, only the ARTIMIS system [13] is

a implemented spoken dialogue system. However, its cur-
rent domain is restricted to providing telephone numbers
of service providers for employment and weather informa-
tion. In addition, it has no capabilities to collaborate with
the user in the event that misunderstandings arise.

Other working systems, such as those built by Smithet
al. [16] and Allenet al. [1], do display advanced dialogue
capabilities, such as employing user-modeling and domain
reasoning. However, it is unclear how much of these capa-
bilities have been built in a domain-specific fashion or rely
heavily on domain-specific functions.

4. A COMPROMISE
As a compromise, we are pursuing an approach that goes
beyond structured dialogues by factoring out the ground-
ing and contribution behavior from the structured dialogue
model. Rather than requiring the designer to break down
the dialogue into speaker turns, the designer instead par-
titions the dialogue intotaskboxes. Each taskbox has a
goal along with associated domain knowledge. For exam-
ple, a taskbox could be used to allow users to schedule an
appointment, make a reservation, select a product, make
a payment, etc. An example of a dialogue built with the
taskbox approach is given in Figure 2. Currently, the goal

Reservation

Departure Time?

Payment
Type of Card?
Card Number?

Expiration?

Destination?
Origin?

Figure 2: Taskbox approach for train reservation

has been limited to collaborating with the user to find val-
ues for slots in a frame. Individual taskboxes are linked
together like the states in a structured dialogue. Thus, the
main advantage of structured dialogues—providingcontext
for speech recognition and natural language understanding—
is preserved. Exactly how much can be included in a taskbox
depends on the current state of natural language under-
standing and dialogue management and can grow accord-
ingly. A further advantage of this approach is that it aug-
ments the structured dialogue paradigm. A dialogue can be
created as a network with both prompt/ response states and
taskboxes.

A key behavior of the dialogue manager is to engage in
the grounding process with the user to ensure that every-
thing said is mutually understood, and to collaborate with
the user in breaking up what the user wants to say into in-
dividual contributions. Our approach draws on work done
by Clark and his colleagues and others who have built on
their work [3, 2, 18, 7]. In the model of Clark and Schae-
fer [2], contributions consist of presentation and acceptance
processes, and presentations can consist of multiple contri-
butions, which in turn each have a presentation and accep-
tance process. Their model suggests that after each user
presentation, we need to give evidence of our understand-
ing. The amount of evidence should depend on the speech
recognition results. If the speech recognition score of the
best recognition result is close to the score of the next high-
est competitor (or a garbage hypothesis), the system should
give stronger evidence of its interpretation of what the user
said, perhaps paraphrasing it or asking for explicit confir-
mation [15, 10]. In this case, the system should expect
that the user might correct a misunderstanding or make a
relevant next contribution. If misunderstandings happen
often, the system can adjust its strategy by asking more
specific questions that have fewer possible responses, such
as yes/no questions. This will ease the speech recogni-
tion problem and improve understanding. Such a strategy
should be dictated by reasoning about minimization of col-
laborative effort.

We also draw on the model of Clark and Wilkes-Gibbs [3].
They model how conversants can collaborate in making
contributions. Consider the case in which the system mis-
recognizes “to Boston” as “to Austin”, and then responds
with “to Austin, from where?” Here, the user will want to
correct the misunderstanding, and might respond back with
“no, to Boston.” Clark and Wilke-Gibbs give a collabora-
tive model in which the conversants iteratively judge and
refine the current contribution. After the initial presenta-
tion, the other participant would pass judgment on it, either
acceptingit, rejecting it, or postponinghis decision. If it
was rejected or the decision postponed, then one participant
or the other wouldrefashionthe contribution. This would
take the form of eitherexpandingit by adding further qual-
ifications, orreplacingthe original expression with a new
expression. The contribution that results from this is then
judged, and the process continues until the contribution is
acceptable by both participants. For the example above, the
utterance “no, to Boston” is a rejection of “to Austin” and
a refashioning to “to Boston”. Thus the resulting contribu-
tion is “to Boston”.

We are building a dialogue manager based on the above two
models. It takes a specification of thetaskbox, and engages
in the appropriate dialogue behavior to collaborate with the
user in realizing the goal of the taskbox. This approach of
using a general purpose dialogue manager to collect and
ground the information needed for each taskbox will sim-

plify the creation of a spoken dialogue system as well as
make the resulting system more user-friendly. This user-
friendliness is the result of giving the user more control of
how they break their thoughts into individual contributions
as well as allowing them to use more natural means to reach
mutual understanding.

5. PROTOTYPE

To show the feasibility of this approach, we have imple-
mented a prototype that works with the structured dialogue
mechanism in the CSLU speech toolkit [14, 17]. A dia-
logue state in the toolkit has slots where TCL code can be
invoked before and after the recognizer is called. Taskboxes
are created by commandeering a dialogue state and using
its slots for communicating via sockets with our taskbox
dialogue manager (written in SWI-Prolog with a TCP/IP
package). The dialogue manager is thus able to control the
behavior of the system until it determines that the taskbox
is completed.

The general-purpose dialogue manager takes a specifica-
tion of the taskbox, which includes the goal of the taskbox,
the necessary domain information and grammar fragments.
The discourse manager tracks the state of the subdialogue,
and uses this in formulating what it is going to say. To facil-
itate the grounding process, the system paraphrases its cur-
rent understanding of the user’s goal. For instance, for the
train example, if it thinks the user wants to go to Chicago,
it will include this as part of its response. The system will
also prompt for missing information. Thus in the above ex-
ample, it would respond with “To Chicago, from where?”
Using its current discourse state and its response to the
user, the dialogue manager has expectations of what the
user will say next. The user might respond to the question
by specifying the origin and optionally specify the depar-
ture time as well; or he might reject (or reject and replace)
the destination. These expectations, along with the taskbox
grammar fragments, are used to dynamically generate the
relevant parsing grammar and semantic/discourse interpre-
tation rules for the current discourse state. In the example
above, the syntactic rule for the user specifying the origin
city has an associated speech act that indicates that the user
is adding this information to their goal specification. In ad-
dition to using this grammar for parsing and understanding
the user’s speech, the discourse manager sends a simplified
version of this grammar (collapsed to a regular grammar)
to the speech recognizer. Thus, the speech recognizer is
tightly coupled with the dialogue manager’s expectations
of the user’s upcoming turn (c.f. [21]).

6. ONGOING RESEARCH

There are a number of avenues that we are currently pur-
suing. First, we are exploring how to make the dialogue
manager more sophisticated with respect to grounding. We
plan on judging the certainty of the recognition results and

using this to influence the grounding strategy. For instance,
if recognition problems occur and continue, we will switch
into a more controlled interaction. We are also extend-
ing the taskbox specification to include hierarchical do-
main knowledge representations using ‘has-a’ and ‘is-a’ re-
lations. This should allow more complex tasks to be han-
dled inside a single taskbox. For instance, for ordering
a pizza and a soft-drink, both have associated sizes with
them. In order to allow the user to naturally talk about
the sizes of both items, and to repair misunderstandings,
the sizes must be associated with the proper item. Rather
than force the pizza and soft-drink to be specified in sep-
arate taskboxes, we plan on having the dialogue manager
understand the hierarchical domain knowledge and keep
track of the focus (c.f. [6]). The need for hierarchical rea-
soning becomes even more apparent for taking multiple
orders, where each pizza can have different ingredients.
Second, we are planning on incorporating robust parsing
techniques, such as used by Phoenix [20]. Rather than use
a grammar recognizer for speech recognition, we plan on
experimenting with using a statistical language model and
feeding its output to a robust parsing with the dialogue ex-
pectations. Third, we are integrating the taskbox approach
closer to the toolkit and plan on making authoring tools to
simplify the specification of the taskbox, which currently
must be done in Prolog.

7. CONCLUSION

In this paper, we proposed a new alternative for building
spoken dialogue systems that strikes a middle ground be-
tween fully structured dialogue models and the richer mod-
els of dialogue that employ techniques such as plan-based
reasoning and logical inference. Rather than specify the
dialogue in terms of a network of prompt/response pairs,
the designer specifies a network of taskboxes, which em-
ploy a generic dialogue manager that drives the dialogue
behavior inside the box. This approach allows much richer
dialogue systems to be built while maintaining domain in-
dependence and the ease of development that the structured
dialogue approach offers.

8. ACKNOWLEDGMENTS

This work was partially funded by the Intel Research Coun-
cil, ONR under grant N00014-94-1-1154, and DARPA un-
der grant DABT63-95-C-007. The authors would also like
to thank the CSLU and CHCC member consortia.

9. REFERENCES
[1] J. Allen, B. Miller, E. Ringger, and T. Sikorski. A robust

system for natural spoken dialogue. InProceedings of the
34th Annual Meeting of the Association for Computational
Linguistics, 1996.

[2] H. Clark and E. Schaefer. Contributing to discourse.Cog-
nitive Science, 13:259–294, 1989.

[3] H. Clark and D. Wilkes-Gibbs. Referring as a collaborative
process.Cognition, 22:1–39, 1986.

[4] P. Cohen and H. Levesque. Rational interaction as the basis
for communication. In P. Cohen, J. Morgan, and M. Pollack,
editors,Intentions in Communication, pages 221–255. MIT
Press, 1990.

[5] R. Cole, D. Novick, P. Vermeulen, S. Sutton, M. Fanty,
L. Wessels, J. de Villiers, J. Schalkwyk, B. Hansen, and
D. Burnett. Experiments with a spoken dialogue system for
taking the U.S. census.Speech Communications, 23, 1997.

[6] B. Grosz. The representation and use of focus in a sys-
tem for understanding dialogs. InProceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages
67–76, 1977.

[7] P. Heeman and G. Hirst. Collaborating on referring expres-
sions.Computational Linguistics, 21(3):351–382, 1995.

[8] L. Lambert and S. Carberry. A tripartite plan-based model
for dialogue. InProceedings of the 29th Annual Meeting of
the Association for Computational Linguistics, pages 47–
54, 1991.

[9] D. Litman and J. Allan. Discourse processing and com-
monsense plans. In Philip R. Cohen, Jerry Morgan, and
Martha E. Pollack, editors,Intentions in Communication,
SDF Benchmark Series, pages 365–388. MIT Press, 1990.

[10] Y. Niimi and Y. Kobayashi. A dialog control strategy based
on the reliability of speech recognition. InProceedings of
ICSLP, pages 534–537, 1996.

[11] D. Novick and S. Sutton. Building on experience: Man-
aging spoken interaction through library subdialogues. In
Proceedings of Twente Workshop on Language Technology
11, 1996.

[12] S. Oviatt, P. Cohen, and M. Wang. Toward interface design
for human language technology: Modality and structure as
determinants of linguistic complexity.Speech Communica-
tions, 15:283–300, December 1994.

[13] M. Sadek, P. Bretier, and F. Panaget. ARTIMIS: Natural di-
alogue meets rational agency. InProceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1997.

[14] J. Schalkwyk, J. de Villiers, S. van Vuuren, and P. Ver-
meulen. CSLUsh: an extendible research environment. In
Proceedings of EUROSPEECH, 1997.

[15] R. Smith. An evaluation of stratagies for selective utterance
verification for spoken natural language dialog. InProceed-
ings of the 5th Conference on Applied Natural Language
Processing, pages 41–48, 1996.

[16] R. Smith, D. Hipp, and A. Biermann. An architechure
for voice dialog systems based on prolog-style theorem-
proving. Computational Linguistics, 21(3):281–320, 1995.

[17] S. Sutton, D. Novick, R. Cole, P. Vermeulen, J. de Vil-
liers, J. Schalkwyk, and M. Fanty. Building 10,000 spoken-
dialogue systems. InProceedings of ICSLP, 1996.

[18] D. Traum and E. Hinkelman. Conversation acts in task-
oriented spoken dialogue. Computational Intelligence,
8(3):575–599, 1992.

[19] M. Walker, D. Hindle, J. Frome, G. Di Fabbrizio , and
C. Mestel. Evaluating competing agent strategies for a voice
email agent. InProceedings of EUROSPEECH, 1997.

[20] W. Ward. Understanding spontaneous speech: The Phoenix
system. InProceedings of ICASSP, pages 365–367, 1991.

[21] S. Young, A. Hauptmann, W. Ward, E. Smith, and
P. Werner. High level knowledge sources in usable speech
recognition systems.Communications of the ACM, 32(2),
1989.

[22] V. Zue, S. Seneff, J. Polifroni, M. Phillips, C. Pao, D. Goo-
dine, D. Goddeau, and J. Glass. PEGASUS: A spoken dia-
logue interface for on-line air travel planning.Speech Com-
munications, 15:331–340, 1994.

