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ABSTRACT

This study presents a new approach for robust speech ac-

tivity detection (SAD). Our framework is based on HMM

recognition of speech versus silence. We model speech as

one of fourteen large phone classes whereas silence is repre-

sented as a separate model. Individual test utterances are

concatenated to simulate read continuous speech for test-

ing. The HMM-based algorithm is compared to both an

energy based, as well as speech enhancement based, SAD

algorithms for clean, 5 dB and 0 dB SNR levels under

white Gaussian noise (WGN), aircraft cockpit noise (AIR)

and automobile highway noise (HWY). We found that our

algorithm provides lower frame error rates than the other

two methods especially for HWY noise. Unlike other stud-

ies, we evaluate our algorithm on the core test set of the

standard TIMIT database. Hence, results can be used as

benchmarks to evaluate future systems.

1. INTRODUCTION

Speech activity detection (SAD) is one of the fundamental

issues in many speech processing tasks such as continu-

ous speech recognition and speech enhancement. Reliable

discrimination between speech and silence becomes very

di�cult in the presence of noise. Robust SAD is required

for pre-recognition noise reduction and recognizer model

adaptation.

There are a number of approaches previously used for SAD.

One approach is based on energy and it's derivatives [2].

Although energy based algorithms work reasonably well for

clean speech, their performance degrades rapidly as SNR

levels decrease. In [8], a word boundary detection algo-

rithm is developed for isolated word recognition which does

not address the problems encountered in spontaneous and

continuous speech recognition, as there is typically no sin-

gle beginning and end point, in continuous speech. Other

endpoint detectors have been proposed based on energy for

isolated word recognition. In [1], an optimized strategy for

�nding endpoints using a three-pass approach is proposed

in which energy pulses were located, edited, and endpoint

pairs scored in order of most likely candidates. However

while it performs well for isolated utterances at SNRs of 30

dB or greater, it fails considerably at lower SNRs. In [9],

Lamel's approach was modi�ed to include delta energy be-

sides energy as features, with speech and noise modeled us-

ing two HMMs. This method is also used for word bound-

ary detection where training and testing data were single

digits embedded in background noise. However the perfor-

mance was not validated on noisy or continuous speech.

In [4], SAD is formulated in the framework of model-based

speech enhancement. However, this approach is both com-

plex and computationally expensive. The testing set was

composed of only 2400 frames of speech which can be ob-

tained from 8-10 TIMIT sentences. The performance of

the algorithm has not been validated on a larger data

set. We observed that detection rates vary considerably

among sentence sets. For example while one set of sen-

tences (amounting to 2374 frames) achieved 1:3% total er-

ror rate (false alarm + miss), another set with a similar

frame count achieved as high as 8:6% frame error rate.

One common theme of these previously proposed SAD al-

gorithms is the lack of a standard evaluation test database.

Generally speaking, it may not be di�cult to �nd single or

small sentence sets which gives arti�cially low error rates.

The literature lacks a benchmark study for which new sys-

tems can be evaluated against. This study establishes the

performance of SAD on a well de�ned core test set.

In this paper we propose a solution to SAD based on

broad class phone recognition where further performance

improvements can be gained by extending to context inde-

pendent and context dependent phone recognition based

SAD at the expense of increases in computational com-

plexity of the algorithm. Our approach is described in the

next section. Furthermore, in order to investigate the via-

bility of our system, we use the standard TIMIT database

where test sentences are concatenated into blocks of four

sentences to simulate continuous read speech. We compare

our system to modi�ed energy based SAD and as well as

speech enhancement based SAD algorithms in the presence

of WGN, AIR and HWY noises.

The rest of the paper is organized as follows. In the next

section we describe our system for SAD. In Sec. 3 we de-

scribe the experimental evaluations and results obtained

from various SAD systems. Next, we discuss some of the

issues and compare our system with other algorithms. Fi-

nally, in Sec. 5 we summarize results and point to possible

future work for further improvement.

2. ALGORITHM DESCRIPTION

The SAD problem can be formulated as a signal detec-

tion problem. S0 denotes the observation vectors for si-

lence and Si denotes the observation vectors for the ith



COMPENSATION

COMPENSATION
MODEL

DECISION
MEDIAN
FILTERFOLDING

POST

ESTIMATOR
NOISE

ADAPTIVE

FEATURE
EXTRACTION

FEATURE

SPEECH MODELS

RECOGNITION

FEATURE
EXTRACTION

ESTIMATATION

INITIAL
NOISE

SILENCE MODEL

.

.

.s(n) Speech
or

Silence

λ1

λ2

λ0

λΝ

Figure 1: Block diagram for SAD.

speech unit in the feature space. Under the noise-free con-

dition H1 denotes the hypothesis that the observation vec-

tor sequence X = fx1;x2; : : : ;xT g, which is assumed to be

Gaussian random vector, belongs to one of the N speech

units. (i : 1 : : : N), whereas H0 denotes that it belongs to

silence. The underlying density under each hypothesis is

assumed to have a mixture of multi-D Gaussian densities.

H0 : X = S0

H1 : X = Si i = 1 : : : N (1)

Equivalently the same decision criteria can be established

in terms of speech versus silence models. An observation

vector sequenceX can be classi�ed as one of the two classes

of HMMs �0 and �i. The conditional probabilities P (Xj�0)

and P (Xj�i) are calculated and the model resulting in the

highest likelihood is selected (assuming equal a priori prob-

abilities).

Choose �0; P (Xj�0) > argmax
i: 1:::N

P (Xj�i)

Choose �i; otherwise (2)

In the presence of noise, the observation vector sequence

X is transformed to ~X which has a di�erent pdf than X.

In order to use the above decision criteria, the models �0

and �i should be transformed in such a way so that they

are able to model the underlying distribution of ~X.

X ) ~X

�0 ) ~�0

�i ) ~�i (3)

Parallel model combination (PMC) can be used to trans-

form noise free models to noisy models while retaining the

likelihood ratio framework. The new decision rule is given

below:

Choose ~�0; P ( ~Xj ~�0) > argmax
i: 1:::N

P ( ~Xj ~�i)

Choose ~�i; otherwise (4)

Here, speech is modeled as a set of units and silence is a
separate single unit. In this respect the problem is sim-

ilar to a keyword spotting problem where speech units

are keywords and silence is a garbage model. Although

speech units are de�ned as one of the fourteen broad phone

classes, they can be extended to individual context depen-

dent/independent phone units for further improvement in

performance.

The general framework of the algorithm is given in Fig. 1.

The dotted blocks shown in Fig. 1 are optional processing

steps which can be included. We assumed that speech is

proceeded by a very short segment of silence from which

the initial noise estimate is computed. Mel-frequency cep-

stral parameters are used in the feature extraction block.

From the noise features, an estimate of the noise mean

and covariance vectors are computed. These estimates are

submitted to the Parallel Model Combination (PMC)[6]

block which is used to transform the noise-free model pdfs

to the noise-corrupted pdfs (i.e., �i ) ~�i. Viterbi based

recognition is used in the recognition block. All recognized

speech units are folded into an overall speech class in the

post-folding block. Confusions among speech models do

not e�ect �nal speech/silence decision due to post-folding.

A median �lter of length 11 has been used to smooth the

output of post-folding. This prevents frame-to-frame tog-

gling among speech and silence states. In our simulations,

since the noise is not varying over time we disable the noise

update block, and used the initial noise estimate during the

entire test scenario.

2.1 Broad Class Phone Recognition Based SAD

We consider speech as one of the following 14 broad

phone classes: nasals, unvoiced fricatives, voiced frica-

tives, a�ricates, unvoiced stops, voiced stops, u/v whispers,

front-vowels, mid-vowels, back-vowels, schwa-vowels, diph-

thongs, liquid and glides. Silence is considered as a sepa-

rate class which is composed of fepi, pau, q, qclg . The 61

TIMIT phones are folded into one of the above classes. The

Viterbi algorithm is used for recognition, with the broad-

class phone recognition output folded into either speech or



silence. The feature vector is composed of 12 static, 12

delta, energy, delta energy. The zeroth cepstral param-

eter is appended to the feature vector to facilitate PMC

compensation. Each of the broad classes as well as silence

is modeled with 3 state left-to-right, 32 mixture HMMs.

Since only 15 HMM models are used to perform recogni-

tion, the computational complexity is small compared to

any typical speech enhancement schemes. A more complex

recognition based SAD system would be based on context

independent phone recognition. The best system is based

on gender and context dependent phone recognition which

is more complex than the �rst two systems. However the

performance is expected to increase as more prior knowl-

edge of the speech is taken into account.

2.1 Energy and Speech Enhancement based SAD

There are two other main approaches used in the past

for SAD. The �rst is based on energy detection whereas

the second is based on speech enhancement. There are a

number of energy based SAD algorithms in the literature

[2, 1, 9, 8, 4]. We used [2] for noise-free conditions and

modi�ed the same algorithm in a noise adaptive manner

for noisy simulations. The algorithm proposed in [2] has

two empirical thresholds which are functions of silence en-

ergy. In our simulations we optimized these thresholds for

minimum error rate. For noisy cases the �rst ten frames

are assumed to be noise alone. The mean estimate of noise

energy is computed from the �rst ten frames. The utter-

ance energy contour is normalized by subtracting the noise

energy estimate in pointwise fashion. The same threshold

setting is used for noisy conditions after normalization.

We also implemented a speech enhancement based SAD.

Noisy speech is �rst enhanced by using the constrained

iterative Wiener �lter (Auto-LSP) approach [3]. This al-

gorithm is based upon a two-step maximum a posteriori

(MAP) estimation of the all-pole speech parameters and

noise-free speech. In the �rst step, a MAP estimation of

the clean speech is obtained from the noisy input speech

(via Wiener �ltering). In the second step, MAP estimation

is used to produce the all-pole model parameters given

the previous speech estimate. In between MAP estima-

tion steps, spectral constraints are applied in order to (i)

ensure stability of the all-pole model, (ii) to ensure that

it possesses speech-like characteristics, and (iii) to pro-

vide frame-to-frame continuity in vocal tract characteris-

tics. Inter-frame constraints are applied to the Line Spec-

trum Pair (LSP) parameters while intra-frame constraints

are applied across iterations to the autocorrelation lag se-

quence. After enhancement, energy based detection is ap-

plied on the enhanced speech where an optimal threshold

is selected for minimum frame error rate.

2.3 Parallel Model Combination (PMC)

We have used parallel model combination (PMC) [6] to

update our HMM models in noisy conditions. The idea

behind PMC is to adapt continuous density HMMs trained

on clean cepstral speech data to make it more robust to

noise. Given a segment of the noise itself, PMC combines

the parameters of the corresponding pairs of speech and
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Figure 2: (a) clean speech, (b) noisy speech (0 dB high-

way noise), (c) enhanced speech, (d) energy-based SAD, (e)

Speech enhancement based SAD, (f) Broad-Class recognition

based SAD, (g) reference transciption.

noise states to yield compensated sets of parameters. A

thorough description of this technique can be found in the

literature [7]. Although both static and delta parameter

compensation are possible, we use only static parameter

compensation which resulted in satisfactory performance.

3. EVALUATIONS

The SAD algorithms are evaluated on the clean (8kHz sam-

pled) TIMIT core test set which inherently has 35 dB SNR.

The models are estimated from data in the training set of

TIMIT. The core test set of TIMIT is used for evaluation.

Core test set is composed of 192 sentences contributed

by 16 male and 8 female speakers. The testing data re-

sults in 57,700 frames to classify with a frame length of 20

msec and skip rate of 10 msec. The performance is estab-

lished based on frame level error rate. Three types of noise

sources are used for noisy simulations: white Gausssian

(WGN), aircraft cockpit (AIR) and automobile highway

(HWY) at 5 dB and 0 dB SNRs. A complete description

of noise types can be found in [5]. In Fig. 2, a typi-

cal example of clean speech, noisy speech and enhanced

speech is shown respectively in the �rst three plots. The

next portion of the �gure shows the decision using energy

based SAD, speech enhancement based SAD and broad

phone-class based SAD, respectively. The last graph shows

the reference speech/silence regions of the speech. Here 1

denotes speech and 0 denotes silence. The speech �le is

obtained by concatenating four sentences which simulates

read continuous speech. As seen in the plot, broad phone-

class SAD closely traces the speech/silence portions of the

speech whereas the other two algorithms make errors espe-

cially in the transition regions where many silence deletions

and insertions occur.

3.1 Noise Free Simulations

In the noise-free case, broad phone-class recognition based

SAD and energy based SAD are used. The results are

shown in Table 1. The �rst algorithm achieved an error

rate of 5:8% while the energy based SAD achieved 7:6%.



Speech Activity Detection (SAD) for (8kHz) TIMIT core test set
Total silence frames: 9083, Total speech frames: 48617, Total frames: 57700

ALG. 1: Broad Class + PMC ALG. 2: Energy Based ALG. 3: SE + Energy Based

Noise SNR (dB) FA Miss Corr P(e) (%) FA Miss Corr P(e)(%) FA Miss Corr P(e)(%)

WGN 5 5058 2496 50146 13.1 2815 7483 47402 17.9 4661 4198 48841 15.4
0 4923 4050 48709 15.6 6373 6001 45327 21.4 4400 5828 47472 17.7

AIR 5 3002 3562 52411 11.1 1439 8157 48104 16.6 5688 2799 49213 14.7
0 3399 5413 48888 15.3 1066 11374 45260 21.6 5507 3442 48751 15.5

HWY 5 2167 1789 53744 6.9 2267 6375 49058 14.0 1848 6641 49211 14.7
0 1576 3624 52500 9.0 1609 8448 47643 17.4 1545 7700 48455 16.0

Clean 2924 405 54371 5.8 2049 2315 53336 7.6 - - - -

Table 1: Detection Errors, FA: false alarm, Corr: correct, P(e): probability of error, P(e)=P(false alarm) + P(miss)

The empirical thresholds for energy based detector are op-

timized over the testing set allowing an arti�cially low error

rate for clean speech. For clean speech, many of the errors

are made in transition frames, which contain speech as well

as silence.

3.1 Noisy Simulations

In all noisy simulations, broad phone-class recognition out-

performed speech enhancement based SAD, which in turn

outperformed energy based SAD. We observed that broad

phone-class based SAD is especially well suited to HWY

noise, even at 5dB SNR the error rate is only 1% higher

than the clean condition. On average broad phone-class

based SAD outperformed speech enhencement based SAD

and energy based SAD by 2:2% and 5:3% respectively for

white Gaussian noise. The average di�erence is again in

favor of our algorithm by 1:9% and 5:9% for AIR noise.

Finally, our algorithm outperformed the other methods by

7:4% and 8:3% for HWY noise.

4. DISCUSSION

Although it is a standard database, one of the issues

that comes up when TIMIT is used for SAD is the ill-

proportioned amount of speech versus silence data. In the

test set there are 9083 frames are silence compared to 48617

frames of speech. This imbalance might lead to a bias in

performance. If the entire test set is labeled as speech

the error rate will be 15:8%. However higher error rates

can be obtained as neither very small false alarm nor miss

are allowed. Therefore neither total number of misses nor

the total number of false alarms should be small. Rather,

their value should be comparable for accurate performance

assessment.

Although PMC can compensate static and dynamic pa-

rameters, only static parameters were compensated. In

[7] it was shown that compensating delta and delta-delta

in addition to static parameters halves the relative error

rate for continous speech recognition. We expect a similar

performance improvement would also to translate to our

SAD.

We can further improve the detection rates by using

context-dependent phone recognition system. Context in-

dependent phone recognition based SAD is feasible since

only fourty six models must be compensated. However

context-dependent phone recognition based SAD would

also be computationally expensive.

5. CONCLUSIONS AND FUTURE WORK

The problem of speech activity detection is addressed by

formulating a broad phone-class recognition system. The

detector is shown to perform well even at low SNRs. It's

performance is compared to a modi�ed-energy and speech

enhancement based detectors. While providing lower error

rates than the other two methods for all noise types, it is

especially well suited for automobile highway (HWY) noise

resulting in half the error rate of the other two methods.

This study can be used as a benchmark for future systems

as it used the core TIMIT set for simulations. Currently we

are working on two new algorithms which will be integrated

into our system. The �rst is normalized likelihood ratio

scoring which is intended to reduce the number of false

alarms. The second is to build boundary-HMMs for robust

decision on speech-noise boundaries.
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