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ABSTRACT

Much progress has been made in speech enhancement al-
gorithm formulation in recent years. However, while re-
searchers in the speech coding and recognition communi-
ties have standard criteria for algorithm performance com-
parison, similar standards do not exist for researchers in
speech enhancement. This paper discusses the necessary
ingredients for an effective speech enhancement evaluation.
We propose that researchers use the evaluation core test
set of TIMIT (192 sentences), with a set of noise files, and
a combination of objective measures and subjective testing
for broad and fine phone-level quality assessment. Evalu-
ation results include overall objective speech quality mea-
sure scores, measure histograms, and phoneme class and
individual phone scores. The reported results are meant
to illustrate specific ways of detailing quality assessment
for an enhancement algorithm.

1. Introduction

Enhancement of speech in the presence of additive continu-
ous broadband noise remains a challenging task, especially
in moderate to high noise levels (SNRs -5 to 10 dB). A
speech enhancement algorithm can be viewed as successful
if it (i) suppresses perceivable background noise, and (ii)
preserves or enhances perceived signal quality. Several sur-
veys of speech enhancement exist[4, 2, 5, 6], though most
traditional algorithms are based on optimizing mathemat-
ical criteria, which in general are not well correlated with
speech perception. In general, these have not been as suc-
cessful in preserving or improving quality in all regions of
speech, especially transitional and unvoiced. It has also
been difficult to compare the performance of speech en-
hancement algorithms, since most papers consider example
evaluations on a few sentences degraded usually with white
Gaussian noise (WGN). Performance is influenced by the
(1) specific type of noise (2) specific SNR, (3) noise esti-
mate updates and (4) algorithm parameter settings. In this
paper, we propose to establish a test evaluation protocol
which researchers in the field of speech enhancement can
use to evaluate their algorithms. This protocol includes
a standard set of test sentences, noise files, and software
which will be made available via WWW for all to access
and use. Because of the number of issues to be considered,
this paper will highlight some of the main assessment steps
(a more complete presentation is found in [1]).

2. Speech Quality vs. Time

When we consider noise reduction, we normally think of
improving a signal-to-noise ratio (SNR). This may not be
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Figure 1: Variable impact of noise on speech quality across
phonemes. Speech waveforms of (A) original, (B) degraded
with white Gaussian Noise, and (C) IS quality measure versus
time are shown. Overall mean IS and sample phone distortion
are highlighted in the IS plot.

the most appropriate performance criterion for speech en-
hancement. All listeners have an intuitive understanding
of speech quality, intelligibility and listener fatigue. How-
ever, these areas are not easy to quantify. A good overview
of subjective quality testing methods and objective speech
quality measures can be found in [14, 2]. For example, in
an evaluation by Quackenbush [14], 322 types of distortion
were considered in the evaluation of over 2000 objective
measures of speech quality. Although SNR was evaluated
only over waveform coder distortions, it’s ability to pre-
dict subjective speech quality was very poor (correlation
coefficient of 0.24 with DAM). It has also been shown in
a number of studies that the impact of noise on degraded
speech quality is non-uniform[12, 8] (see Fig. 1). An ob-
jective speech quality measure shows the level of distortion
for each frame across time. Since speech frequency content
varies across time due to the sequence of phonemes needed
to produce the sentence, the impact of background distor-
tion will also vary (note increased distortion levels for /n/,
/r/, and stop closure /tcl/). This variable impact of noise
on speech quality leads us to conclude that some phone
classes are effected more than others when produced in
a noisy environment. Our goals therefore are to empha-
size the importance of employing a systematic diagnostic
test procedure which would allow one to assess the impact
of background noise or speech enhancement performance
across individual phonemes or phoneme classes. We sug-
gest that a combination of subjective and objective speech
quality measures, applied to an easily accessible speech
corpus test set, represents the most effective way to as-
sess the impact of background noise, and quantify quality
improvement for speech enhancement algorithms.



3. Objective Quality Assessment

Objective methods rely on a mathematically based mea-
sure between the original and coded/degraded speech sig-
nal. The success of these measures rests with their corre-
lation with subjective quality.

Itakura—Saito Distortion Measure: For an original
clean frame of speech with linear prediction (LP) coeffi-
cient vector, ds, and processed speech coefficient vector,
@aq, the Itakura—Saito distortion measure is given by,

2 - T 2
dis(da, dy) = {”—d’] {R—‘b} +log (”—) 1)

0'3 (_1'¢R¢(_L';I; O'd)

where o3 and 0’2 represent the all-pole gains for the pro-
cessed and clean speech frame respectively.

Log-Likelihood Ratio Measure: The LLR measure is
also refered to as the Itakura distance (note that the
IS measure incorporates the gain estimate using variance
terms, while the LLR does not; this influences how each
measure emphasizes differences in general spectral shape
versus an overall gain offset). The LLR measure is found

as follows,
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Log—Area—Ratio Measure: The LAR measure is also
based on dissimilarity of LP coefficients between original
and processed speech signals. The log-area-ratio parame-
ters are obtained from the P* order LP reflection coeffi-
cients for the original r4(j) and processed r4(j) signals for
frame j. The objective measure is formed as follows,
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Segmental SNR Measure: Since the correlation of SNR
with subjective quality is so poor, it is of little interest
as a general objective measure of speech quality[14]. In-
stead, we choose the frame-based segmental SNR which is
a reasonable measure of speech quality. It is formed by
averaging frame level SNR estimates as follows,
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Frames with SNRs above 35dB do not reflect large percep-
tual differences, and generally can be replaced with 35dB
in Eq. 4. Likewise, during periods of silence, SNR, values
can become very negative since signal energies are small.
These frames do not truly reflect the perceptual contribu-
tions of the signal. Therefore, a lower threshold is often set
to provide a bound on frame based SNR, (we select -10dB,
but the range of (0,-20dB) has been suggested[13]).

(4)

Weighted Spectral Slope Measure: The WSS mea-
sure by Klatt (1982) is based on an auditory model in
which 36 overlapping filters of progressively larger band-
width are used to estimate the smoothed short-time speech
spectrum. The measure finds a weighted difference be-
tween the spectral slopes in each band. The magnitude of
each weight reflects whether the band is near a spectral

peak or valley, and whether the peak is the largest in the
spectrum. A per-frame measure in decibels is found as,
36
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where K, K are related to overall sound pressure level of
the original and enhanced utterances, and Kspl is a param-
eter which can be varied to increase overall performance.

4. Subjective Quality Assessment

The range of subjective testing schemes include those early
methods which focused on speech intelligibility, and those
which focus on overall quality. Intelligibility tests include
the modified rhyme test (MRT), and the diagnostic rhyme
test (DRT). Isometric absolute judgement tests attempt
to evaluate more than just intelligibility, such as aspects of
overall quality. Some of these tests include; the ‘Goodness’
test, mean opinion score (MOS) tests, and the paired ac-
ceptability rating (PAR) method. Another test which eval-
uates speech and background signal quality across multiple
scales is the diagnostic acceptability measure (DAM)[14].
While these tests have been used to evaluate many voice
communication systems, it is important to note that they
may be valid only for restricted distortions.

We emphasize that quality assessment of speech enhance-
ment algorithms can not be achieved without formal sub-
jective testing. It is therefore proposed that a combination
of two test procedures be used. First, in order to assess per-
ceived quality, a subjective MOS test be performed. This
allows for an overall assessment of quality. However, since
many enhancement algorithms also introduce processing
artifacts, listeners may prefer one processing artifact more
than another. To assess this, a subjective Pairwise Prefer-
ence Test (PPT) should be employed. A series of pairwise
randomized processed sentences are presented and listen-
ers simply select the one they prefer. For the PPT, testing
should also include the original degraded speech.

5. Enhancement Algorithms

The focus of this paper is on an assessment protocol for
speech enhancement algorithms. In our study[l], we con-
sider ten enhancement algorithms. Because of space limi-
tations, only three of the methods are discussed here.

Nonlinear Spectral Subtraction: The NSS [11] algo-
rithm takes into account frequency-dependent SNR. Using
a nonlinear subtractor, the subtraction factor is reduced for
spectral components of high SNR and increased for spec-
tral components of low SNR. In addition, the noise model
is extended by utilizing both an averaged noise spectrum
and an overestimated noise spectrum. The NSS enhance-
ment can be expressed in terms of a filtering operation,

|Xi ()| = Hi(w) - [Yi ()], (6)

where H;(w) depends on a smoothed estimate of the noisy
speech magnitude spectrum, |Y;(w)|, and nonlinear sub-
traction term, ®;(w),
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The subtraction term, ®;(w), is given by,
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where v is a constant scaling factor dependent on the

range of p;(w). The dynamic range of ®;(w) is limited
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MMSE Estimator: Ephraim and Malah [7] proposed
this estimator for the short-time spectral amplitude com-
ponent of speech in noise. Here, the speech and noise
spectral components are modeled as Gaussian random vari-
ables. The algorithm estimates the k** spectral magnitude
component using a filter of the form,
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where I,(-) and I;(-) represent modified Bessel functions

of the zero and first order. Furthermore, v, is given by,
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where £, and . represent the a prior: and a posteriors

signal-to-noise ratios for the k" spectral component.

Noise—Adaptive Auto-LSP: The Constrained Iterative
Wiener Filter (Auto—-LSP) approach [8] is based upon a
two-step maximum a posteriori (MAP) estimation of the
all-pole speech parameters and noise-free speech. Between
MAP estimation steps, spectral constraints are applied in
order to ensure (i) stability of the all-pole model, (ii) that
it possesses speech-like characteristics, and (iii) frame-to-
frame continuity in vocal tract characteristics. Inter-frame
constraints are applied to the Line Spectrum Pair (LSP)
parameters while intra-frame constraints are applied across
iterations to the autocorrelation lag sequence. For slowly
varying colored noise, it is useful to adapt the constraints
to the frequency range dominated by the noise. An ex-
tension was therefore developed, referred to here as Noise
Adaptive (Auto:I,LSP:T), which operates on subbanded
signal components in which the terminating iteration is
adjusted based on the a posterior: estimate of the signal-
to-noise ratio in each signal subband. The enhanced speech
is formulated as a combined estimate from individual sig-
nal subband estimators.

6. Results

In the evaluation protocol, we propose using the 192 sen-
tence core TIMIT test set, and a collection of ten noise
sources[10] (results are presented here for white Gaussian
noise: WGN, and automobile highway noise: HWY). The
evaluation begins by degrading and processing each sen-
tence at SNRs of [0, 5, 10, 15dB]. We note at this time that
source code to degrade speech, many of the enhancement
routines, and all objective quality routines are available
from our web site in ‘C’. The intent here is to provide a
common evaluation test platform for developers of speech
enhancement algorithms[1]. Our evaluations here focus on
the type of results which are important in assessing en-
hancement performance.

6.1. Objective Quality Results

Objective quality measure results are presented in four ar-
eas. We note that there are several ways to obtain overall
quality scores. For most measures, finding a mean across
a large test set is reasonable. If users want a general mea-
sure of performance the median of the resulting frame-level
scores is more useful (a mean quality measure is typically
biased by a few frames in the tails of the quality mea-
sure distribution). Another way to get a reasonable overall
measure is to either (i) find the mean with outliers greater
than 50 removed from mean calculation ms., or (ii) find
the mean using the first 95% of the frames, mgsy. This al-
lows for the removal of a fixed number of frames which may
have unrealistically high distortion levels (this is equivalent
to limiting SegSNR to a perceptual meaningful range). All
mean values here (except SegSNR) use the mgsy mean.

Highway Noise, 5 dB SNR

IS LLR | LAR | SegSNR | WSS

Degraded 0.50 | 0.33 5.14 -0.88 41.9

MMSE 0.39 0.25 3.60 +3.55 39.8

NA-AutoLLSP 0.47 | 0.27 3.94 +3.59 40.1

NSS 0.42 0.23 3.21 +4.15 39.1
White Gaussian Noise, 5 dB SNR

IS LLR | LAR | SegSNR | WSS

Degraded 2.76 | 1.23 6.81 -1.30 42.0

MMSE 1.63 0.91 5.71 +2.39 40.7

NA-AutoLLSP 1.71 1.02 6.10 +1.76 43.9

NSS 1.61 0.82 5.39 +3.04 47.4

Table 1: mgs9 objective speech quality scores across speech
sections for TIMIT core test set (192 sentences).

Overall Performance: Table 1 summarizes the five ob-
jective measures for two noise sources for original degraded
and with each of the three enhancement algorithms across
the 192 TIMIT core sentence set. We see that all three
enhancement routines provide quality improvement. Since
WGN degrades the entire frequency band (whereas HWY
is mostly low-freq.), the starting distortion level is higher.

Segmental SNR (dB)
Sound Type (@ [ (b) | (c) [ ##frames
Silence -9.75 | -9.27 | -8.46 11,127
Vowel 3.38 8.26 8.17 22,471
Nasal -5.15 0.06 1.64 4,784
Stop -6.13 | -2.89 | -1.87 12,474
Fricative -6.42 | -2.09 | -0.42 12,429
Semivowel 3.50 8.56 8.75 6,237
Diphthongs 6.07 | 10.79 10.5 6,514
Total (- Silence) | -0.88 | 3.55 4.15 67,154

Table 2: Segmental SNR across broad phoneme classes for
TIMIT core test set (192 sentences) degraded by additive au-
tomobile highway noise at 5 dB SNR for (a) original degraded
(b) MMSE enhanced, and (c) NA-AutoLSP enhanced.

Phone-Class Performance: Another way to explore
performance is across phone-classes as summarized in Ta-
ble 2. Such a comparison allows us to identify where an en-
hancement algorithm is functioning well and where further
improvement is needed. Since these are SegSNR scores,
larger values reflect higher quality (for IS and other mea-
sures, values closer to 0.0 are better). Here we see that
MMSE does better for vowels and semivowels, while NA-
AutoLSP does better for nasals, fricatives, and stops.




ITAKURA-SAITO OBJECTIVE SPEECH QUALITY ACROSS AMERICAN PHONEMES
Phoneme Deg. MMSE NA-AutoLSP  NSS || Phoneme Deg. MMSE NA-AutoLSP  NSS
CONSONANTS - nasal, fricatives, stops VOWELS, DIPHTHONGS, SEMIVOWELS
/m/ me 0.348 0.319 1.003 0.617 Jiy/ heed 0.162 0.112 0.128 0.265
/s/ sip 0.740 0.653 0.452 0.762 || /ao/  all 0.138 0.089 0.079 0.200
/z/  Zp  0.786  0.648 0.464 0.748 || /ix/  debit  0.254  0.185 0.245 0.356
/k/ key 0.365 0.351 0.254 0.409 Jow/ code 0.112 0.061 0.086 0.196
/b/ be 0.141 0.265 0.110 0.216 /r/ ran 0.168 0.115 0.145 0.210
/pcl/  mop 2295  1.712 1.333 1.409 |[overall - /h#/ 0.772 _ 0.546 0.418 0.471

Table 3: A sample set of IS measures for original degraded (5dB HWY), and three enhancement methods across phonemes.
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Figure 2: Histograms of frame—based Itakura—Saito (IS) dis-
tortion measures over 192 sentence TIMIT core test set: (A)
speech degraded with additive white Gaussian noise, and (B)
enhanced using NA-Auto-LSP, MMSE, NSS algorithms.

Quality Measure Histograms: Another way to com-
pare performance is using quality measure histograms as
shown in Fig. 2. For the IS measure distribution here,
we see that after processing, all three enhancement algo-
rithms move degraded frames closer to noisefree ‘0’ distor-
tion. The important aspect here is to compare the number
of frames in the tails of the distribution, thus reflecting the
consistency of the enhancement algorithm.

Phone-level Quality Performance: The fourth ap-
proach for illustrating quality performance is at the in-
dividual phone level. Since phone-level transcriptions ex-
ist for TIMIT, it is easy to group frames for a particu-
lar phoneme. Table 3 lists 10 of the 61 phonemes used
in TIMIT, with IS measures for degraded, and the three
enhancement methods. This allows the user to compare
performance within individual phone classes (note simi-
lar performance for the enhancement algorithms for voiced
/z/ and unvoiced /s/ fricatives). Using the overall score
for comparison, it is easy to rank individual phones above
and below the mean.

7. Conclusions
In this study, we have considered factors important for ef-
fective evaluation of speech enhancement algorithms. We
proposed that researchers use the evaluation core test set
of TIMIT (192 sentences), with a set of noise files, and a
combination of objective measures and subjective testing
for broad and fine phone-level quality assessment. We rec-
ommend that subjective MOS testing be done to identify
broad quality, and Pairwise Preference Testing to deter-
mine listener preference to algorithm processing artifacts.
Five objective speech quality measures were considered,
since it is known that SNR is a poor predictor of speech
quality. We illustrated four methods of demonstrating
objective speech quality performance based on (i) overall
quality measures, (ii) phone-class level scores, (iii) quality

measure histograms, and (iv) phone-level evaluation. The
reported results are meant to illustrate specific ways of de-
tailing quality assessment for an enhancement algorithm.
We emphasize that good objective quality measures exist
which clearly outperform SNR, and that a combination of
subjective and objective testing allows researchers to care-
fully identify algorithm performance. Interested readers
are encouraged to check our web page for available en-
hancement evaluation tools.
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