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frequency (LSF) features are related to formant frequencies,
ABSTRACT constraining the GMM components to have constant diagonals

Voice adaptation describes the process of converting tﬁgproxmates _frequency vyarpmg — another 9ommon approach

output of a text-to-speech synthesizer voice to sound like tQ spectral voice conversion. The next. section mtroo!uces the

different voice after a training process in which only a smaftindamentals of the system, while Sections 3 and 4 discuss the

amount of the desired target speaker's speech is seen. 9@up and evaluation of an experiment to compare

employ a locally linear conversion function based on Gaussig@erformance with different estimation methods and number of

mixture models to map bark-scaled line spectral frequenciesixture components, and with different amounts of training

We compare performance for three different estimatiotata.

methods while varying the number of mixture components and

the amount of data used for training. An objective evaluation 2. VOICE CONVERSION SYSTEM

revealed that all three methods yield similar test results. In

perceptual tests, listeners judged the converted speetityqua?.1. Features

as acceptable and fairly successful in adapting to the target

speaker. The sparseness of the training data limits the scope of the

adaptation algorithm to segmental properties only, specifically

1. INTRODUCTION to average pitch and spectral characteristics related to vocal

. . . . tract size and shape. Bark-scaled LSFs were chosen as spectral
Voice conversion systems aim to modify a source speaker's

speech so that it is perceived to be spoken by a different taré%?tures because of the following properties:

speaker. Integrating voice conversion technologies into @  Errors are localized in frequency: a badly predicted vector
conc_:gtenatlve_ speech syntheslzer allows for the production of component effects only a portion of the frequency
addltlona_l voices f_rom a single sourc_e-speaker dat_abase. spectrum adversely.

When this system is used to "personalize" a synthesizer to
speak with any desired voice, we refer to the process as "voice | SFs have good linear interpolation characteristics [5].

adaptation”. This is essential because the conversion function linearly

As an extension of our previous work [2], this paper explores combines vectors.
issues related to the goal of performing voice adaptation using
only a small amount of adaptation data. This is desirable
because users want to adapt a new voice quickly and with as
little speech as possible. This paucity of the data limits the
scope of adaptation algorithms to segmental properties only, g training cost function employs a mean squared error
such as pitch and spectral characteristics related to vocal tract
size and shape. The general approach is to find a regression
mapping between features in the source and target spaces. The
generalization of this mapping to unseen cases is critical to our \
application. The mapping function is a probabilistic, locally- ~ fréquencies).

linear function based on a Gaussian mixture model (GMM .
estimated from source and target feature densities. We wél-z- Spectral Mapping
discuss the advantages of modeling the joint density rath

than using a least-squares solution approach publish
recently. characterizing a succession of speech sounds produced by the

source speaker angi:[y1 Yo oo yN] be features describing

Th_'s c.h0|.ce Of_ features and _mapplng funct|c_)n caq be _USEd {ifose same sounds as produced by the target speaker.
gain insight into the relationship and dimensionality of

spectral differences between two speakers. This informatigh GMM allows the probability distribution of to be written
can be used to constrain the mapping technique to be robusagthe sum of) multivariate Gaussian functions,
sparse training data. In particular, because line spectral

LSFs relate well to formant location and bandwidth,
which have been shown to be perceptually relevant for
speaker identity.

measure; hence a bark scaling weights prediction errors in
accordance with the frequency sensitivity of human
hearing (more sensitive to frequency changes at lower

gét x=[x; X,--xy] be the sequence of features



Q Q
o)=Y aNos %), Ya=l @20, @
1=1 ]

where N(x;u,Z) denotes a normal distribution with mear
vector y and covariance matri¥, and a; denotes the prior
probability of class. The parameters of the modét, u,>)

can be estimated using the well-known expectatic
maximization (EM) algorithm.

frequency

The goal is to compute a conversion functiothat minimizes
the mean squared error

Emse™ E%V_F(X)llzgv (2) ] ‘ ‘ ime

where E denotes expectation. The conversion function fdgure 1: Qne-dimensiongl examp!e dempnst_rating results
chosen to be a probabilistic, locally linear mapping function from two different conversion function estimation methods.

F(x)= ihi (b + e ), ©) F(x)=ElyIx]=[dyyp(y|x)
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where hy(x) is the posterior probability that ttié Gaussian ;h' () [M *EEET) (X H )
component generated calculated by application of Bayes
theorem where

hi (X): g N(X; H ,Zi ) (4) h (X)= aj N(X; /JiX!ZiXX) (8)

Q ' )
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A simpler form of the conversion function can be obtained by

XX X! X
rewriting (3) as with =; = Etiyx Ziyig and y; = a"y E.
Q SR B4 g
F(x)= i ()wix+bi], ©) N _ _ _
=1 The joint density (JD) method estimates mixture components
based on observations dfoth the source and the target
whereW, = FiZi_land b =v, —Wiy; . vectors, and makes no assumptions about the target

distributions, whereas the LS method clusters are based on the

In one approach [6], the paramete(my,z) of a GMM are source vector distributions only.
estimated to model the distribution wf Then the unknowns

. . Modeling the joint density rather than only the source density
(v,r) are computed by solving normal equations for a least S . .
can lead to a more judicious allocation of mixtures

squares problem based qn the cqrrespondence between égﬁ‘lponents. This is demonstrated in Figure 1 with the aid of a
soqrce .and target. We will call this the least squares (Lé}mplified, one-dimensional problem. Suppose we needed to
estimation method. map from a linear source trajectory with fixed slope to a more

Another approach, used in our previous work [2], verticallfomplex target trajectory shown. Training a conversion

joins the source vectors with the target vectors to form function with two mixture components results in a fairly
X0 accurate match in the JD case, while the LS case has large
Z:B/D. (6) deviations from the target. This is due to the fact that LS
0

constructed clusters without taking into account the target

) ) distributions.
GMM parameters(a, 1,Z) are estimated for the density(z),

which is the joint densityp(x, y) [3]. The conversion function During the EM step, JD is computationally more expensive

that minimizes the mean squared error between convertg}?_n LSd bhecaudse btlh?:i dimensionality of the lsp.ace to b_e
source and target vectors is the regression estimated has doubled. However, no extra solution step is

required. In addition, the largest matrix in the solution step of
LS requires several times more memory than is required for
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07 = J‘D’ The training corpus in our experiment consisted of 31 short

06 - ol words and 8 sentences, yielding about one minute of speech.
After acquisition of the source and the target utterances the

05 speech was force-aligned phonetically. Subsequently, the
phonetic boundaries were checked and corrected by hand.

e 04 LSFs were extracted with a fixed frame rate of 10ms from the

03 ™ pre-emphasized speech. Finally, the data were assigned to
training sets of three different sizes.

02 Compared to our previous work [2] in which we used studio

01 recorded diphone databases, these datasets are more realistic
in that the target speech is continuous and has been recorded

0 4 81632 1 2 4 8163264 1 2 4 8 163264128 in an 9ff|ce enwronm(_ant. Furthermore, the spectral es_tlmates
components are noisy due to the pitch-asynchronous feature extraction.

Figure 2: Training errors produced by different estimation 3.2, Training

methods. The three set of lines represents an increasing amount

of data seen during training. Within each set, the number of We compared three different methods of training: JD and LS

mixture components is varied as indicated by the axis labels. With full covariance matrices and a special case of LS where
the covariance and mapping matrices are diagonal (LSD) [7].

bl 1701 vectors 6‘80“'“7“?“”1 This last case approximates a frequency warping function
/ —— I | when used in conjunction with LSFs. The EM algorithm was
06 = o4 run for 15 iterations. To prevent singutas, a small value
was added to the diagonal elements of the covariance matrices
05 z< after each iteration. For each training set size, the number of
04T mixture components was varied as a power of 2 between 1 and
¢ up to 128.
0.3 B ] &R P
3.3. Conversion
> To obtain a converted utterance, spectral features are extracted
0.1 exactly as during training and then mapped to new features by
the conversion function whose parameters were estimated
01 2481632 1 2 4 8163264 1 2 4 8 163264128 during the training process. The pltCh of the source Speaker's
components residual is scaled to match, on average, the target speaker's

pitch. The modified residual and the new spectral parameters
are re-convolved to render the final converted speech.

4. EVALUATION

Figure 3: Test errors. The test set size is fixed throughout.

JD. Finally, LS necessitates approximately twice the number

of operations as JD during training. 4.1 Objective Evaluation

3. EXPERIMENT To objectively evaluate the spectral conversion function

performance at various operating points we measure the
3.1. Speech Material normalized mean squared error
. . N
It is our goal to convert a text-to-speech synthesizer’s voice to 1 Z"y B F(x )"2
a new voice. Therefore the source speaker speech is the output . N4 A " )
of a synthesizer, while the target speaker is recorded. For normmse ~ 1 N JI12 '
simplicity, we assume ‘“cooperative” training, where it is WZ Yn~H ||
n=

possible to obtain any desired target speaker utterance. We L

have used the Festival Text-to-Speech Synthesis System [1 . )
P y Y \[N]e measured errors on both the training and a test set, which

with the OGIresLPC module [4], both freely available for . )
14] . y was obtained by holding out 20% of the vectors of the total
research purposes, and another commercial product as speec

. available dataset. The errors presented are averages over three
synthesizer sources. . . -
rotations with different data held out each time.



Figures 2 and 3 summarize the training and test errors for tie hear audio examples of the voice adaptation and other
three training methods. Each cluster of lines represents resudistems, please visit the web sitdeip://cse.ogi.edu/cslul/tts

for three increasing training set sizes. We observe that, for the

most part, LS and JD perform comparatively. This behavior CONCLUSIONS

seems to indicate that the target distributions are similar to t .
9 If%(frt_hough the JD method has theoretical advantages, the LS

source distributions in respect to their variance. Parameters .
) . . method yields almost the same accuracy. However, JD has the
LS are not estimated reliably when a large number of mixture

) . . . implementation advantages of requiring less operations and
components is used due to numerical difties in the P 9 q 9 P

. . less memory.
solution of normal equations. In terms of the total number 0? y

parameters used, all three methods perform very similarly (tf®en though LSFs are not statistically independent, the LSD
number of mixture components needs to be 2 to 3 times higheethod achieves accuracy comparable to the JD method.
when diagonal covariances are used as compared to fgliture work will nvolve deeper analysis of the relationship
covariance matrices). between frequency warping and the LSD method.

The first two test sets have minima, indicating the “best cas#éfiformal perceptual tests reveal that the subjective quality is
in terms of number of components. When even morgcceptable, even though the speakertitenf the target has
components are used, overtraining occurs as is indicated byly been partially adapted to.

rising test errors. Naturally, the test set errors decrease for

mappings that have been trained on more data. ACKNOWLEDGEMENTS
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feature components individually, is as effective as a general
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