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ABSTRACT

In this paper, a new technique is introduced that relaxes the
HMM conditional independence assumption in a principled way.
Without increasing the number of states, the modeling power of an
HMM isincreased by including only those additional probabilis-
tic dependencies(to the surrounding observation context) that are
believed to be both relevant and discriminative. Conditional mu-
tual information is used to determine both relevance and discrim-
inability. Extended Gaussian-mixtureHMMsand new EM update
equations are introduced. In an isolated word speech database,
results show an average 34% word error improvement over an
HMM with the same number of states, and a 15% improvement
over an HMM with a comparable number of parameters.

1. INTRODUCTION

Hidden Markov Models (HMMs) are the most common statis-
tical method used for automatic speech recognition where they
model the joint probability distribution of a collection of ran-
dom variables under certain statistical assumptions. Under the
first-order Markov assumption, a set of "hidden" variables, one
for each time point, form a discrete-valued first-order Markov
chain. Under the conditional independence assumption, a set of
observation variables, again one for each time point, are each
conditionally independent of past variables given the correspond-
ing hidden variable! While HMMs can potentially represent
rich probability distributions, these assumptions burden the hid-
den variableswith the task of containing all relevant information
about the observation variables' environment.

Theconditional independenceassumption can befurther exam-
ined by observing how an HMM modelsp(X:| X «+) and compar-
ing thiswith the“true” distribution; X, isan observation vector at
timet,and X<, = {X1,..., X:_1} isthe observed context pre-
ceding X;. Without any modeling assumptions, X canbeviewed
asthe output of anoisy channel with input X . (Figure1). Foran
accurate representation of p(X|X <), any channel model must
have capacity at least ashig as 1 ( X¢; X «:) whereI(X;Y) isthe
mutual information between random vectors X and Y.
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Figure 1. The distribution of X; can be thought of as being
probabilistically determined by its context X . — that is, as a
noisy channel with the context asinput and X; as output.

Under an HMM, p(Xt|X<t) = qu(Xt|Qt = q)p(Qt =
q| X <), where 3, represents the random hidden state variable at
time¢. AnHMM, therefore, attemptsto compresstheinformation

1Both areconditional independence assumptions; these namesare used
to distinguish the two assumptions later in the paper.
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about X; contained in X.; into a single discrete variable Q)
(Figure 2). For an accurate representation, these two channels
must be sufficiently powerful, i.e., C; > I(X¢; X <) where C;
is the capacity of noisy channel ;. Furthermore, the number
of hidden states must be large enough to accurately encode the
information being transmitted. Thisis essentially a requirement
that |Q| > 2/(X+X<t) where |Q| is the number of hidden states.
Assuming @@ appropriately encodes the information contained in
X< relevant to X, an HMM'’s accuracy can be increased by
increasing the number of states (as has been repeatedly noted in
the past).
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Figure 2: With an HMM, the information about X contained
in X <. is“sgueezed” through the hidden state variable Q. De-
pending on the number of hidden states, this can overburden Q)
and result in an inaccurate probabilistic model.

In this paper, a new technique is introduced that relaxes the
conditional independence assumption in a principled way. With-
out increasing the number of states, the modeling power of an
HMM is increased by including only those additional probabilis-
tic dependenciesbelieved to be useful according to training data.
This can potentially lead to a more powerful statistical model
without a large free-parameter increase. Section 2 introduces a
data-driven method used to expand an HMM'’s probabilistic de-
pendencies. Section 3 describes a heuristic approximation to the
dependency selection algorithm given in Section 2. Section 4
describesan implementation of the extended HMMs and includes
an EM training procedure, and Section 5 gives word-error results
for anisolated-word digits data-base.

2. BURIED MARKOV MODELS

For a given number of hidden variable states, the degree
to which a hidden variable does not contain contextua in-
formation can be measured using conditional mutual informa-
tion. The conditional mutual information I(X:; X<:|Q¢) =
Do (X6 X<t|Qe = ¢)p(Qr = q) represents the quantity of
additional information X ., provides about X; not already pro-
vided by Q;. In particular, I(X:; X<:|Q¢ = q) represents the
amount missing for a particular hidden state value ¢. This sug-
geststhat if 7(X;; X<¢|Q: = ¢q) > 0, the accuracy of an HMM
can be improved without increasing the number of states by aug-
menting the probabilistic observation models with dependencies
directly on contextual data. It also suggests that dependencies
should be added 1) only on the “relevant” contextual data, 2) that
arepotentially distinct for each value of @, and 3) that are chosen
to provideonly new information not already provided by @;. This
isdepictedin Figure 3.

Using just the first-order Markov assumption, the joint distri-
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Figure 3: Improving an HMM by including additional direct

dependencies on the relevant portions of X «; depending on the
value of Q..

bution of the observations can be written:?

ZHP Xt|X1, .- ~,Xt—1, Qt)P(Qt|Qt—1)

In this form, the model for the distribution of X; depends only
on previous time frames. While not necessary for subsequent

analysis, the chain rule of probability can be violated® to get:

ZHP Xe| X Ry, s q0)p(ae]4e-1)

where Xth C {Xl, ey Xt—l, Xt+1, ey XT} is a subset of
X's surrounding context. For a fixed size Xr,, , the problem
becomes choosing the elements of X r,, to maximize the condi-
tional mutual information /(X:; Xr,, |Q: = ¢¢) for each¢:. In
this case, Xr,, is a vector consisting of relevant (i.e., entropy
reducing) and non-redundant (i.e., containing information not al-
ready provided by @) portions of X:'s context given Q; = g:.

p(X1r)

p(X1r)

Does additional information typically exist in the surrounding
context given @? Figure 4 shows a conditional mutual informa-
tion density plot 1{Af,£|Q) = avg,_;_p I(Xei; Xi—e;|Q) In
bits per unit areacomputed (asin[1]) from a2 hour random selec-
tion of the Switchboard continuous-speech databasewhere X;; is

the '™ element of the random vector X, and ¢ istime-lag. Feature
channelsconsist of cuberoot-compressed sub-band envelopes(so
Af isfrequency difference) and ¢ represents decision-tree clus-
tered triphones.* As can be seen, additional information is on av-
erage distributed throughout the acoustic context. Similar results
have beenfound both for different labeling schemes(monophones
and syllables) and feature sets (MFCCs, LPC and RASTA-PLP
coefficients).

Toincreasetractability, dependenciesare considered and added
individually for each feature element. Define the context of X,
astheset Zi = {Xi—¢; : V4, 5} — {Xu}. Thesetof N vari-
ables ka = {Zkl, -, Zi, } providing the greatest entropy
reduction of X; when Qt = ¢ can be found by evaluating:

argmax I(X”;Z;M;N|Qt = q)
Z;Cl:N C Zu

Alone, this selection method suffices to increase the descriptive
power (i.e., lead to a higher likelihood) of the model for a partic-
ular state ¢ but does not necessarily decrease classification error.
A potential problem, therefore, is that the chosen dependencies
might also reduce “entropy” in the context of a different and in-
correct state. To increase the discriminability between different

2The notation X 1.y representstheset {X1,..., X }.

3This might sound like an egregious mistake buit it is actually quite
common and can be beneficia in practice, e.g., delta features, hybrid
ANN/HMM systemg[2], etc. The theoretical problems could potentialy
be eliminated if each probability distribution is considered a potential
function (asin aMarkov Random Field) and if appropriate normalization
terms are used for each HMM. Such issues are not addressed further in
this work.

4Thanksto Katrin Kirchhoff for these labels.
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Figure 4: The conditional mutual information density of aran-
domly selected 2-hour section of the Switchboard continuous-
speech database (in bits per unit area).
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states, dependencies should be chosen that both 1) decrease en-
tropy in the context of the correct state and 2) do not decrease the
entropy (as much) in other contexts. This second concept can be

represented with the following mutual information-like quantity:®

Iiqu=r} (X Zlil:N|Qt =4q) =

P(Xui, 2}, 1Q = q)
E ; — |lo LIV
A 190 |9 RIQr = (7, 1@ = )

for r € C, where C, is the set of state values that could
lead to a confusion with state ¢q.  Using this notation,
H(Xei: Ziypo Q0 = 0) = Ligu=ay(Xeii Ziy |Qe = q). The
quantity I(g,=,1(Xei; Zi, ., |Q¢ = q) is similar to mutual infor-
mation except that the individual event-wise entropy reductions
are averaged under the probability distribution for the confusable
context r rather than the original context . When r # ¢, it rep-
resents the situation in a classification task during evaluation of a
model in an incorrect context.

klN'

The dependency selection algorithm istherefore asfollows: for
each ¢ and ¢, choosethe size N, set of variables Z;LNQ for which

[(Xu; Ziy, 1Q0 = q) islarge and g,y (Xui; Zi,., Qi =
¢) issmall for eachr € C,.

Thisapproachisdistinct from previouswork [3, 8, 4, 9] in that
the dependency structure may be sparse and may change for each
value of Q. rather than depending on an additional, fixed, and
arbitrarily chosen sets of observations. And rather than depend-
ing on a location in a segment trajectory [5], the dependencies
are data-derived; using conditional mutual information, the de-
pendencies are chosen to provide new and discriminative infor-
mation about X; not already provided by the current value of Q..
This potentially leads to a more accurate statistical model with-
out alarge free-parameter increase. The result is called aburied
Markov model (BMM) because the underlying Markov chain in
an HMM is further hidden (buried) by specific cross-observation
dependencies.

SUsing the notation E,, ) [f(X)] = [ p(z)f(x)dz.



3. HEURISTIC DEPENDENCY
SELECTION ALGORITHM

The general algorithm presented in the previous section in-
volves the computation of mutual information between vectors
evaluated under different probabilistic contexts. Computing of
such quantities directly would involve more data and/or compu-
tation time than is typically available. In this section, a tractable
heuristic algorithm is developedfor selecting agood set of depen-
dencies Z,; for each ¢ and feature position :.

To avoid potentially computing |Q| Zq |Cy| values for each
candidate dependency set, thequantity /{g, =, (Xei; Zi, , |Qe =
q) is approximated using /(X::; 75, |Q: = r), areasonable
guessat an upper bound. The difference between the two quanti-
tiesis:

I(X”; Zlil:N |Q: = T) - I{Qt=r}(X”; Zlil:N |Q: = q) =

D(p(Xeil Zhppys Qe = MIp(Xeil Ziy g Qe = 0))—

D(p(Xu:|Qe = r)lIp(Xu:|Q: = q))

where D(pa||p2) is the relative-entropy between distributions p;
and p». While there is no guarantee that this difference is non-
negative, intuitively it can be argued that additionally conditioning
on Z,, .. is not likely to decrease the relative-entropy between

(Xt,|Qt =r) andp(X:|Q: = ¢). Thisisbecause,forr € C,,
thequantltyD( (th|Qt =7)||p(Xe:|Q: = ¢)) isaready small.
And Z;, . is chosenin asenseto highlight rather than suppress
differences between the distribution of X; given ¢; = ¢ and
given @, = r. Itisunlikely such a chosen Z; _ will cause
a further decrease in relative-entropy, even if selected using a
different probabilistic model as above. Therefore, the following
relation is assumed typical for r € C,.

I(X”; Zlil:N|Qt = T) 2 I{Qt=r}(X”; Zlil:N|Qt = q)

Using aliberal estimate for Cy, (i.e., Cy D €, asan estimate of
Cy), resultsin a stronger constraint on the chosen 75 . A lib-

eral C, potentially eliminates some useful dependencies, but any
remaining dependencieswill still be informative and discrimina-
tive for the confusableclasses. €, can therefore be approximated
with alarger set, perhaps even the entire set of states (sansg).

A second difficulty stems from evaluating mutual information
between vectors rather than scalars._ The chain rule of mutual
information says I(Xei; Zun|Q) = > I(Xei; Z5| Z1(5-1), Q)-
This can be approximated by first finding 71 sothat 7 ( X+:; 71|Q)
is large, Z» so that I(Xi:; Z2|Z1, Q) is large, and so on.
Because of this approximation, earlier dependency selections
can affect later ones. Each of the 7 variables are there-
fore considered in order of decreasing utility choosing the
most informative and discriminative variables first. Us-
ing an argument similar to the previous paragraph, utility
IS deﬂned as Um(Z]) = I(X”;Z]|le(]_1),Q = q) —
I(Xti;Z]|Zli(]—1)’Q € Cq) Where I(Xti;Zj|le(]—1)aQ.€
Co) = 3 e, X1 Zi| 21521, @ = ¢p(Q = )/ with
v = quc p(Q = ¢). Theremaining difficulty is the evalu-

q
ation of 1(Xy; Z;| Zy.;_1y, @) which captures the notion that a
variable should not be added to Z; if it contains only redundant
information already provided by previously added variables (i.e.,
novariableinZ,; should haveaMarkov blanketin Z ,; shieldingit
from X ;). Toapproximatethisquality, I(X:i; Z;| Z1(;-1), @) is
consideredlargeif both I (X:; Z;|Q) islargeand I (Z;; Zx|Q) is
small for & < j andis considered small if 1(X; Z;|Q) issmall.

These approximations lead to the following heuristic depen-
dency selection algorithm for choosing Z,; for each ¢ and ::

SetZyi =10
Sort Z; € Z;; into an order decreasing by Um( )
Repeatover] until Uy (Z;) < 7 O |Zy;| =
If 7; satisfiesall thefollowmg criteria:
"N I(Xei:2,|Qe = q) > 74
2)Foreach 7 € Z;,
3)I(Xm,Z]|Qt E C ) < Te
thenadd 7; to Z;

7. places a lower bound on utility. Criterion 1 ensuresthat any
added dependency provides a significant amount of information
(determined by the threshold ;) to the current model. Criterion
2 isaredundancy check, and puts an upper bound on the amount
of information a dependency variable may have about previously
added dependency variables. Criterion 3 places an upper bound
7. on the prior-weighted cost of this dependency when evaluat-
ing the current model in other potentially confusable contexts. It
is possible to end up with fewer than N, (or even zero) depen-
denciesif no satisfying Z exists for the current thresholds. This
algorithm requires only the computation of pairwise conditional
mutual information for agiven labeling scheme.

4. GAUSSIAN-MIXTURE BMMS

In this section, Gaussian mixture HMMs are extended to in-
clude the cross-observation dependencies specified by a BMM.
The dependenciesaffect only state specific observation models so
modifications involve only Gaussian mixture models.

The observation models should allow their entropy to be af-

fected by the additional dependencies. To this end, hidden vari-
ablesm and v are introduced to obtain the following:

Zprmv|zq

m=1v=1

(z|z,9) =

where z = (z1,...,2zq4)" is an observation vector, z =

(z1,...,%s,1)" isthe entire collection of dependency variables
any element of = might use (appended with the constant 1 to com-
pute a fixed mean offset), m indicates a mixture component, and
v indicatesthe classof z. m isassumed independent of z given v
and ¢ and v is assumed independent of ¢ given z resulting in:

ZZP z|m, v, z, q)p(m|v, ¢)p(v|2)

m=1v=1

(z|z,9) =

wherep(m|v, q) isadiscrete probability table, p(v|z) isthe prob-
ability of class v given continuous vector z, and

_ 1 l(m Bymuvz)'Z mv(.r Bgmuvz)
p(z|m,v, z,q) = W 1 - 4
isaGaussian distribution with mean B ... and covariance Z 4. .
The d x (s+1)-sized Bym. matrices have asparse structure deter-
mined by the BMM dependenciesfor state .

With z containing observationsonly from z’s past, these equa-
tions alone constitute a generalization of auto-regressive HMMs
[6,7] (d =1, M = 1,V = 1), vector-valued auto-regressive
HMMs[4,9,8]° (d > 1, M = 1, V = 1), mixture auto-
regressive HMMs [3] (d = 1,M > 1,V = 1), and the usual
Gaussian mixture models (d = 1,M > 1,V = 1,s = 0). With
V > 1and M > 1, this model can be considered a mixture of
mixtures. An important difference from previous work is that
herethe dependency structure, asrepresentedby By, issparse,

6[9] uses discriminative output distributions similar to state-specific
LDA and also considers dependenciesfrom future observations.

(Z],Z|Qt) < TgI(ZJ;Xti|Qt = Q)



data-derived, and hidden-variable dependent as described in Sec-
tion 2. Furthermore, z is allowed to contain observations from
z's past, present, and future.

By introducing an auxiliary function and taking its derivative,
it can be shown that the EM update equations for maximum-
likelihood parameter estimation are as follows:

T T -1
Bymy = (Z Ygmv (t)xtzé) (Z Ygmv (t)ztzé) ,
t=1 t=1

iy Yame(D)(@e = Bamoz) (2 = Bomozt)'
T
Zt:l Ygmu (t)

> Yamo (1)
ZtT=1 Zi\ndzl Yqmo (1)

where vgmo (t) = p(qr = ¢, my = m, v, = v|o,z) and where
o (resp. z) is the set of training vectors (resp. context vec-
tors). p(v|z) does not change between EM iterations, so any
(perhaps unsupervised) classification method can be used prior
to EM BMM learning. The update eguations for the transition
probabilities are the same as usual.

5. RESULTSON AN ISOLATED DIGITS
DATABASE

Gaussian-mixture BMMs were tested with d > 1, M = 5,
V = 1, and with diagonal covariance matrices on digits+, a
telephone quality database of isolated digits and control words
from Bellcore. The datais represented using 12 MFCCs plus co
and includes deltas resulting in a d = 26 element feature vector
sampled every 10ms. Dependency links were allowed to span a
maximum of 70ms (7 frames) on either side of ¢.

% o :

and

p(m|v,q) =

All word error rates (WER) reported are obtained using data
from 200 speakerstotaling 2600 examplesfrom 4 jackknifed cuts
— scores shown are the average of 4 tests in which 150 speakers
were used for training and 50 different speakersused for testing.
WER is computed using Viterbi probability evaluation.

Num. States 3 4 5 6 7
WER 1.73% | 1.34% | 1.15% | 1.19% | 1.19%
Num. Params. | 10140 | 13520 | 16900 | 20280 | 23660
Num. States 8 9 10 11 12
WER 0.89% | 1.35% | 1.08% | 1.08% | 1.00%
Num. Params. | 27040 | 30420 | 33800 | 37180 | 40560

Table 1: Resultsfor aHMM with various number of states.

The following procedure is performed independently for each
cut and number of states per word. Whole-word strictly left-
to-right HMM models bootstrapped using a uniform segmental
k-means procedure are created. Full EM training is performed
until convergence is achieved and then HMM word error is cal-
culated. Using the HMMSs, the Viterbi path is computed for each
word determining the state of each frame. Conditional mutual
information is computed (as described in [1]) using the resulting
labels. The BMM dependency selection algorithm of Section 3
is performed. The BMMs are trained starting with the meansand
covariances given by the corresponding HMM and with initial
dependency link values set to zero. Forced-Viterbi training is
performed on the BMMs using the |abels derived from the HMM.

Table 1 shows the WER for normal HMMs with varying num-
bers of states per word along with the corresponding humber of
observation model parameters. Table 2 shows BMM WER. As
can be seen, for a given number of states per word, the BMM
error rate is always better than the corresponding HMM WER.

Num. States 3 4 5 6
WER 0.96% | 0.85% | 0.96% | 0.73%
Num. Params. | 19157 | 25511 | 32070 | 38521

Table2: Resultsfor aBMM with various number of states. The
dependency selection parametersare 7, = 5x 107% 7, = 1073,
Ty = 15%, 7. = 5 x 1072, N, = 2for al ¢, and C,, is the set of
all states except g.

Theaverage percentage WER decrease’ from anHMM to aBMM
in this case is 34%. The table also shows that aBMM is aways
better than an HMM even when comparing withan HMM using a
comparable number of parameters. The average percentage WER
decrease from an HMM to a BMM in this case is 15% (BMMs
with 3,4,5, and 6 states are compared with HMMs with 6, 8, 10,
and 12 statesrespectively). Thebest WER achievedis 0.54% with
aBMM using 6 states per word, 61877 parameters, and N, = 7.
The same procedure using JRASTA features shows comparable
WER results and BMM advantages.

6. CONCLUSIONS

The HMM conditional independence assumption can be re-
laxed by including additional probabilistic dependenciesonly to
the relevant and discriminative observation context. In this paper,
amethod has been provided that chooses this context using con-
ditional mutual information. In an isolated word speech database,
BMMs show improved performance over comparable HMMs.

The model building scheme presented above can be consid-
ered discriminative, but maximum likelihood training is currently
beingused. A discriminative training scheme such as MCE com-
bined with these discriminatively built models might yield an
additional advantage.

This work has benefited from discussions with Geoff Zweig,
Nelson Morgan, Nir Friedman, and Dan Ellis. Thiswork hasbeen
partially sponsored by ONR URI Grant N00014-92-J-1617 and a
DoD IDEA grant.
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