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ABSTRACT

Current state-of-the-art statistical speech recognition sys-
tems use hidden Markov models (HMM) for modeling the
speech signal. However, it is well known that HMM’s
do not exploit the time-dependence in the speech pro-
cess, since they are limited by the assumption of con-
ditional independence of observations given the state se-
quence. Alternative techniques, such as segment model-
ing approaches, can effectively exploit time-dependencies
in the acoustic signal by discarding the observation inde-
pendence assumption. However, losing the basic HMM
structure is often a high computational price to pay for
improved acoustic models. In this paper, we introduce the
parallel path HMM that exploits the time-dependence
in speech via parametric trajectory models while maintain-
ing the HMM framework. We present preliminary results
on Switchboard, a large vocabulary conversational speech
recognition task, demonstrating both improved modeling
and potential for improved recognition performance.

1. Introduction

Hidden Markov models (HMM) are the most popular ap-
proach to statistical speech recognition [1]. It is well known
that HMM’s can only exploit the time-dependence in the
speech process in a limited way, due to the assumption
of conditional independence of observations given the hid-
den state sequence. Alternative techniques, such as para-
metric and non-parametric constrained-mean trajectory
segment modeling approaches [2], can effectively exploit
time-dependencies in the acoustic signal by relaxing the
HMM independence assumption. In particular, paramet-
ric trajectory models [3, 4] explicitly represent the tempo-
ral evolution of the speech features as a Gaussian process
with time-varying parameters. However, segment model-
ing approaches typically fall outside the framework of the
HMM’s, hence, are unable to take advantage of the efficient
HMM training and recognition algorithms.

In this paper, we describe a new approach that exploits
time-dependence in speech using parametric trajectory
models, but does so while maintaining the basic HMM
framework. The paper is organized as follows. In Sec-
tion 2, we first investigate trajectories in the speech signal
as modeled by the HMM, and introduce the notion of a
parallel path HMM. Section 3 describes in detail the
training and recognition procedures with the new HMM

structure, while raising the important modeling and pa-
rameter sharing questions that need to be tackled. In Sec-
tion 4, we present preliminary results on the Switchboard
task [5], and finally, Section 5 concludes with a discussion
of the future research issues for the parallel path HMM
framework.

2. Trajectories in HMM

As preliminary work, we first analyzed the time-sequence
produced by the BBN Byblos speech recognition system [6],
a state-of-the-art speaker-independent HMM system. Fig-
ure 1 presents, for phone “W”, the means of the most likely
terms of the HMM state mixture distributions and the cor-
responding input cepstra that generated the particular out-
puts as a function of time. Only the first cesptral feature
and the corresponding mean are represented in this figure
for clarity, a reasonable comparison given the HMM mix-
ture distributions used diagonal covariances.
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Figure 1: Plots of the most likely terms of the HMM
state mixture distribution and the input cepstral feature
in normalized time-sequence.

While the plots clearly demonstrate the existence of tra-
jectories in the speech signal, they also indicate that the
HMM is, by and large, producing trajectories that are rep-
resentative of the input data. Thus, while the HMM is
creating trajectories because the data follows trajectories,
it is modeling these trajectories without the knowledge of
the inherent trajectory structure in the input features.

If we assume that a phone can be represented as a single
trajectory, then the HMM essentially needs to model the
inherent variability around this trajectory; we refer to this
variability as the intra-trajectory variability. However,



we know from our segment modeling experience [9] that
a single trajectory representation is often not sufficient to
explain all the observed variability. Variations in speak-
ing rate, context, speaker and even gender can result in
completely different trajectories for the same phone. We
refer to this variability across all trajectories representing
the same phonetic unit as the inter-trajectory variability.
In a regular HMM, the state mixture distributions model
both the intra- and the inter-trajectory variability. This
poor modeling strategy manifests itself by the HMM out-
put hopping between trajectories with a limited likelihood
penalty.

Recently, there have been two new approaches that aim
at overcoming this HMM limitation. In [7], each phonetic
unit is represented as a regular left-to-right 9-state HMM
modeled by a single Gaussian per state. The mean val-
ues of the HMM state sequence then represent the mean
trajectory, which is now subject to some parameterized
transformation (for example, a random shift) that is global
to that segment. However, the estimation of this random
shift requires the speech segment boundaries (both dura-
tion and HMM state alignments); therefore, this model is
used only in re-scoring N-best lists generated by an HMM.
A more general approach has been proposed in [8], where a
mixture of Gaussians per state is used to model the intra-
trajectory variability, while the inter-trajectory variability
is represented as a randomized shift modeled by a second
mixture of Gaussians. In this paper, we propose an alterna-
tive approach, that creates a parallel collection of HMM’s
for each phonetic unit, each parallel path representing a
smaller set of trajectories. Our approach, besides modify-
ing the HMM topology, also differs from both [7, 8] in that
trajectory variations are no longer restricted to random
shifts.

3. Parallel Path HMM

We first describe the parallel path HMM in Section 3.1,
before discussing the initialization and parameter sharing
issues raised by adopting such a modified HMM structure
in Sections 3.2 and 3.3.

3.1. HMM Topology
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Figure 2: Left-to-right HMM topology with S =5 states
in time sequence and M = 3 parallel paths. Transitions
are not allowed across parallel paths.
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In the parallel path HMM, each phonetic unit is repre-
sented by a collection of M HMM’'s that model the inter-
trajectory variability. Each of these M HMM’'s have S

states in time, each HMM representing a smaller set of
trajectories that model the intra-trajectory variability via
a mixture of K Gaussians per state. Henceforth, in this
paper, we will use the term parallel states to refer to a col-
lection of states {s+m xS,0 <m < M} where1 <s< S.
There are two pseudo-states, s = 0 and s = ((M—1)*S+1),
that have only have exit and entry transitions respectively.
Also, we will use the term regular HMM to distinguish the
normal S-state HMM from the S x M-state parallel path
one.

In the topology represented in Figure 2, the segmental
structure is imposed by disallowing transitions across par-
allel paths. Each parallel path can be trained using the
regular HMM training algorithms. The multiple paths eas-
ily fit into this framework simply as additional states with
transition probability constraints. In fact, no change to the
training or decoding procedure is required.

3.2. Initializing HMM Training

The key to creating the parallel path HMM’s lies in es-
tablishing the sets of trajectories that will form the basis
of the parallel collection of HMM models. A random ini-
tialization can prove to be very inefficient, besides poten-
tially nullifying the effects of modeling the inter-trajectory
variability. In this work, we use the parametric trajectory
segment models [3, 4, 9] for initializing the parallel path
HMM training.

Parametric Trajectory Models: As mentioned earlier,
parametric trajectory models [3, 4] explicitly represent the
temporal evolution of the speech features as a Gaussian
process with time-varying parameters. Given a speech seg-
ment with a duration of N frames, where each frame is
represented by a D dimensional feature vector, the seg-
ment can be expressed in matrix notation as:

C1,1 C1,D
C2,1 C2,D

C= _ , =[¢c, ... C] O
CN,1 CN,D

and modeled as a Gaussian process with time varying pa-
rameters as in:

C=ZB+E (2)
where Z is a N x R design matrix that specifies the type of
model to use, B is a Rx D trajectory parameter matrix that
requires estimation, E is a residual error matrix that also
provides the trajectory covariance 3, and R is the number
of parameters in the trajectory model. In this paper, we
use quadratic trajectories, R = 3, for all our experiments.

The likelihood of an observed segment k, L(Bj, ;) with
estimated trajectory mean B}, and covariance X given the
model mean B and model covariance ¥ can be expressed
as:

L(By, 5B, D)) = (3)
(271')_[”2\”c |E|_% - exp (—%tr [E_lf}k]) .

exp (—%tr [Zk(Bk - B)E_I(Ek - B),Z;C]) :



The above formulation can be further extended to esti-
mating parameters of a mixture of M parametric trajec-
tory models [4, 9]. The parameters to be estimated now
include the means and covariance of the trajectory mix-
ture components, B,,, S, as well as the mixture weights,
p(m) for 0 < m < M. We initialize the trajectory mix-
tures using a non-parametric K-means approach described
in detail in [9]. The mixture parameters are further iter-
atively re-estimated using the Expectation-Maximization
(EM) algorithm.

Parallel Path HMM Training: The parametric mix-
tures of trajectories are introduced into the HMM training
to initialize the parallel path HMM. Training the parallel
path HMM now comprises the following steps.

1. Phonetically label the training data via Viterbi de-
coding with a regular S state HMM trained on the
same data. In addition to providing segment bound-
aries, the Viterbi alignment also produces the state
sequence alignment si(t) : 0 <t < N,1 < s < S for
each N-frame segment observation k.

2. Given the training segmentations, for each phone j,
estimate a mixture of M parametric trajectory mod-
els, {B},,2,,p’(m): 0 <m < M}.

3. For each segment observation k, estimate the most
likely trajectory mixture component i

1y, = argmax p’ (m)L(By, S| B, 50,),  (4)

where j refers to the phone identity, {B%,, ©4,, p’ (m)}
are the means, covariance and prior probability of the
m*™ component of phone 5, and L() is estimated using
Equation 3.

4. For each segment observation k, re-label the state se-
quence sj to reflect the mixture component selected,
ie.

Sk(t) = S X 1y + sk (t). (5)
Note that the state alignments for the parallel paths
do not change.

5. The new state sequence labels are used to bootstrap
the parallel path HMM with M x S number of states,
followed by a regular HMM training using the EM
algorithm.

6. Finally, we re-label the training data using the newly
trained parallel path HMM'’s to get more consistent
state alighments, and re-train.

3.3.

Sharing of mixture distributions and weights is important
for robust training of a context-dependent large vocabulary
HMM recognition system. Sharing is typically decided by
a tree clustering algorithm, where a tree is built by first
creating branches for each phone and then for each state
of each phone. Using a combination of contextual cues (for
e. g. “is the right phone a fricative?”, “is the left phone
a vowel?”) and acoustic data, further branches are added
automatically to the tree until two sets of clusters are deter-
mined, one that specifies which triphones of a state share

Parameter Sharing

mixture components (referred to as the shared codebook),
and another that specifies which triphones of a state share
the entire distribution: both the codebook and the mix-
ture weights (referred to as the shared pdf). Note that the
clustering algorithm is designed to disallow sharing across
states.

Clustering is an even more critical issue for the paral-
lel path HMM, where the data is additionally partitioned
across parallel paths. There are several clustering alterna-
tives available for the parallel path HMM’s. We list two
choices here, one where no parameter sharing is allowed
across parallel states, and another where parameters can
be shared across parallel states based on a tree-based clus-
tering algorithm:

e We can adhere to the current clustering paradigm,
where a clustering tree is grown per state in the HMM
topology. This explicitly imposes the trajectory infor-
mation to have precedence over contextual variations.
In this scheme, no parameters are shared across par-
allel states.

e The more flexible clustering choice includes the par-
allel path information as simply an additional ques-
tion during the tree growing procedure. More specif-
ically, trees are grown per regular state s: 1 < s < S,
and mixture distributions and/or weights can now be
shared across parallel states. For the simplest case
of M = 2, this is equivalent to first evaluating the
goodness of the split achieved by the question “should
the observations at this node be split based on their
parallel path identity?”, and then comparing it to the
context-related splits. Note that sharing distributions
across parallel states as a result of the clustering pro-
cedure is not equivalent to having a single merged
state. For one, we still maintain separate state transi-
tion probabilities for the different paths, and secondly,
there can be different parallel states that can precede
and follow the current state.

4. Experiments

Recognition results are reported on the Switchboard and
Callhome corpora [5] using the BBN Byblos System [6].
The test set comprises 7 Switchboard and 7 Callhome con-
versations drawn from the NIST 1997 Large Vocabulary
Speech Recognition evaluation data set. Acoustic training
for all the experiments use an in-house 18 hour subset of
the Switchboard data. The baseline training and recogni-
tion dictionary comprises 25,000 words.

Initial phonetic segments (or labels) are obtained using a
5-state regular HMM trained on the same 18 hour subset.
Input features include 14 cepstral coefficients, the normal-
ized energy, and their first and second order differences.
Parametric trajectory models with quadratic trajectories,
diagonal covariances and 2 mixture components are trained
on these initial labels. Due to time limitations, we only
report proof-of-concept results for a 2 parallel path case,
initialized with the parametric trajectory mixtures. We
did not re-label the data to improve the state alignments



for the parallel HMM paths in the experiments reported in
this paper.

Table 1 compares a regular 5-state HMM topology with a
10-state parallel path HMM with 5 states in a sequence
and 2 parallel paths. Two clustering configurations are in-
vestigated for the parallel path framework: (i) a total set
of 1000 codebooks with 64 diagonal Gaussian mixtures per
codebook, and (ii) a total set of 1600 codebooks with 40
Gaussian mixture distributions per codebook. Clustering
trees for both cases are grown using questions based on con-
textual cues; no parameter sharing across parallel states is
allowed. Recognition performance with 2 parallel paths de-

Table 1: Word error rate on BBN development test set.
No parameter sharing across parallel states.

| Acoustic Model | # of parameters | WER. (%) |

5-state regular HMM 1000x64 53.7
10-state parallel HMM 1000x64 54.0
10-state parallel HMM 1600x40 53.9

grades compared to a regular HMM. Closer analysis shows
small improvements in training likelihoods. We hypoth-
esize that the performance degradation is a result of our
sub-optimal clustering strategy, where we impose the tra-
jectory/path information to take precedence over context
information. Thus, by maintaining the same number of pa-
rameters, we effectively reduced context-dependence in fa-
vor of the parallel states. However, our intuition that fewer
Gaussians will be required to model the intra-trajectory
variability with the parallel path HMM'’s appears to be
true, although more experiments are required to confirm
this, given the small difference in results.

In the next series of experiments (refer to Table 2), we mod-
ified the clustering algorithm for the parallel path HMM’s
to allow clustering across parallel states. The tree growing
questions now include a path-dependent question. With
the new clustering, we observe a small improvement in both
training and recognition likelihoods. We also see a small
improvement in recognition performance with the parallel
state HMM using an identical configuration (same set of
decoding weights and pruning thresholds, parameters in-
clude 1000 codebooks with 64 Gaussians per codebook) as
the baseline HMM.

Table 2: Word error rate on a BBN development test set.
Parameter sharing across parallel states allowed.

| Acoustic Model | WER (%) ]
5-state regular HMM 53.7
10-state parallel HMM 53.2

5. Future Work

In this paper, we have presented the parallel path HMM,
a new approach that combines the advantages of segmen-
tal models with HMM'’s while maintaining the basic HMM

structure. The segmental information is directly used for
bootstrapping the training of the HMM model. The new
approach provides a more structured framework for dis-
tributing as well as increasing the number of HMM pa-
rameters. Preliminary results with 2 parallel paths have
shown encouraging improvements.

There are several straightforward advances that will fur-
ther improve recognition performance with the new mod-
els. These include increasing the number of parallel paths,
increasing acoustic training to include the full 160 hour
Switchboard data set, and re-labeling the training data to
correct the state alignments for the parallel paths. At the
same time, there are several interesting research questions
that need to be investigated. The parametric trajectory
models is just one of several alternative models available for
initializing the parallel path HMM. Non-parametric mod-
els may also provide an interesting alternative, especially
since they are more consistent with the HMM. It would also
be worthwhile evaluating the impact of improved segment
models on the parallel path training.
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