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ABSTRACT It can be argued that microprosodic variation is analogous to
variation in other aspects of speech in that there are both phe-
In this study of Finnish microprosody, two prosodic paramenomena that are extremely common and phenomena that are ex-
ters — pitch and loudness — were modeled with artificial neutremely rare. The rich combinatorics of natural language makes
ral networks. The networks are of the general feed forward typge number of possible combinations of units very large. Con-
trained with backpropagation. For each phoneme, the netwogequently, the individual phenomena that are rare in themselves
predicts a series of either pitch or loudness values on the basiscome common when seen as a group and occur frequently in
of information of the phoneme’s phonologically motivated featunning speech or text. This makes it practically impossible to
tures and its phonetic environment. The tests we have run gather databases that can serve as a training basis for all the phe-
far indicate that the neural networks are highly successful amtbmena and combinations in speech (even in some constrained
accurate in modeling the micro-level behavior of both pitch andomain, such as microprosody). This calls for models that can
loudness. The tests were conducted on isolated word material bndke generalizations of some kind and generate accurate predic-
some preliminary results obtained from sentence material are alons for patterns that are absentin the database.
discussed.
Neural networks are known for their ability to generalize ac-
cording to the similarity of their input but at the same time known
1. INTRODUCTION for being able to distinguish different outputs from input patterns
that are superficially similar. This means that the networks can
Pitch-related microprosodic variation has been well attestddarn to predict patterns it has never seen before — a fact that
for several languages including Finnish. For instance, the funmakes them an ideal candidate for building models from imper-
damental frequency difference between open and close vowdéxt data for the highly complex phenomena that prosody com-
and the effect of immediate consonant context onRheof a  prises in all its levels.
vowel seem to be universal [10], [1], [9]. Similar variation can
be observed with regard to loudness. The most well known phe- The network architecture used here, as well as the data repre-
nomenon is the difference between the inherent loudness lev&igntations for both types of networks, was the same throughout
of, e.g., open vs. close vowels and sonorant vs. obstruent condoe tests since the problem at hand is quite similar — to model
nants [5]. microscopic variations in two time-varying parameters that occur
in similar circumstances and are for the most part governed by
The microprosodic characteristics can be seen as the lowhe same factors.
est level of a multi-layered prosodic systenogucing the final
suprasegmental realization of speech. They are not generally seefhe models were trained speaker-dependently, i.e., one or
as a part of the linguistic-prosodic pattern of the utterance, biitore models for each speaker were generated. The study was
rather to be segmentally conditioned. That is, they reflect thearried out on the object-oriented QuickSig signal processing en-
gestures necessary for producing the specific articulatory movéironment, which is programmed in LISP/CLOS [4]

ments for various vowels and consonants.
2. TRAINING AND EVALUATION DATA
In speech synthesis, microprosodic modeling has usually been

fairly scarce — the developers have concentrated on more salientThe tests presented here were conducted on a database of about
and urgent problems and the modeling has usually remained 2000 hand-labeled isolated words spoken by two male Finnish

a first approximation level. In general, speech synthesizers uggeakers. The words in the set include most bi-phonemic se-
some information about the intrinsic pitch, loudness and duratioguences found in Finnish and some interesting tri-phonemic se-
of speech sounds which are changed algorithmically accordinliences (mostly consonant clusters). The words were further di-

to certain rules that take the sounds’ context into account. TRgded into two training and two evaluation sets with a ratio of 2
microscopic changes within the time-varying parameters of thg 1, respectively.

sounds have not been paid much attention to, although most syn-

thesis systems do model the timing Bfpeaks and differences ~ We used nine points (or frames) for the relative linear position
in Foslopes and onsets after different consonants. It is probabié the estimated value within the phoneme. Thus, each phoneme
that the inclusion of microprosodic variation would improve thein the set produced nine training elements for the networks. The
naturalness and even the intelligibility of synthesizeglesgh. total number of training elements varied from about 500 to 20000.



2.1. Input Data Normalization

. . . “takassak|n” Text string
The signal amplitudes in our database are not homogene

due to slightly different conditions during the recording phase — /taklgs:akin/

the distance between the speaker’s mouth and the microphone, Phaneme strin
instance, could not be kept totally fixed. For this reason we hg

to implement a normalization scheme to keep the inputs for tf ¢V stp @ sep vV © place in word = 4
loudness networks as constant as possible. Our scheme is as ' : place in phoneme = 8

lows: first a sonority table is calculated for each phone/phoner /\ \\\\\\\\ \\\ -
nput vector,
]

Input

Coding

in the database for each speaker (this table corresponded w
the ones reported in the literature with the open vowels being t [8.42.41.0.4.2.1.4.8.8.2.4.8.4.879.375.810
loudest, followed by mid and close vowels [5]). Second, ead
loudness signal is shifted according to the peak (which invar
ably falls on the first syllable nucleus) and the vowel in which th
peak occurs. For instance, if the peak occurs in the voayéite
loudest one), the signal is shifted so that the peak value becon
100 phon — if the peak occurs in some other vowel, the signal
shifted in such a way that the peak value will be 100 phon mind
the value in the sonority table. Thus, e.g., a peak occurring
[i] will result in a value 0f100 — 4.8 = 95.2 phon. This is ob-
viously not the best way to normalize the loudness signals but ouput: coded FoO
had a positive effect on the networks’ performahc®ee section or coded loudness
4 for details on the normalization of i -curves.

Hidden laye;

Neural Network

Output layel

Target: coded FO
or coded loudness

/\% FO or loudness curve

The neural networks used in this study are of the general fegtlgyre 1: The neural network input, coding and architecture. The
forward type trained with backpropagation. The networks conexample shows the coding for the vowel / in the wiaklassakin
sist of three layers — input, output and a hidden layer. The outn the fire-place, too’). A seven-phoneme window is used; the
put layer consists of one node which outputs either a fundamenigkee features for the vowel are phoneme titer(a = /a/), its
frequency value in (coded) semitone (later converted to an abs@ass (BV = back vowel) and its length (. = short). The addi-
lute Hertz value) or a loudness value in (coded) phon. The inpgbnal information in the training vector includes: the estimated

has eighteen values for a distributed coding scheme (see beloyhoneme's place in the word, the length of the word and the esti-
The hidden layer has eleven nodes — the optimal number was G@ated frame’s position in thenoneme.

termined empirically. Figure 1 shows the network’s architecture
as well as its input coding strategy. the phoneme — the estimation for each phoneme thus consists of
nine equidistant frames or points within the span of the phoneme.

The input coding follows a distributed scheme used succes§he input vector covers a seven-phoneme window by providing

fully in our earlier studies of Finnish lexical prosody [6], [7] andinformation about three phonemes on both sides of the estimated

[8]; this was an adaptation of the scheme used by Karjalainezne. Moreover, the context is coded in a manner which provides

and Altosaar for predicting segmental durations in Finnish [3]. Anore resolution (i.e., more detailed information) for the nearby

sequence of phonemes is represented by a set of linguisticaltgighbors and less resolution for the further neighbors. Each in-

motivated features that are straightforward to calculate from put value is coded as a real number between zero and one. See

string of phonemes and require no structural analysis of the ifrigure 1 for more detail.

puttext. The features are: phoneme idign(e.g., &/), phoneme

class (e.g., nasal), phoneme broad class (consonant vs. vowel)

and quantity degree (short vsong). Each input vector also in- 4. RESULTS

cludes three values representing the information aboutthe context

for the estimated value or frame. These are: length of the word (asThe performance of both types of networks is summarized in

the number of phonemes in the word), ftios of the estimated Taple 1. The results for loudness are somewhat preliminary since

phoneme in the word and the piosn of the estimated frame in the networks were trained on data that was normalized by accord-

insg to maxima within words; i.e., the network estimates, not only

&})e contour within the phone, but within the whole word as well.

3. NEURAL NETWORK
ORGANIZATION AND INPUT
CODING

Training data

I The normalization scheme does not take into account the differenc
in the stress level between the words. However, this does not seem

be a problem, for the words in the database were articulated in a very . .
monotonous and neutral manner. Figure 3 shows a comparison of the actual fundamental fre-

2The only structural analysis we have experimented with so far hagduency values and the neural network_ estimates for SIX _dlfferent
been the syllabification of the input text. This, however, had viety ~ c2S€S. See the caption for more detail. Somewhat similar cases

positive effect on the networks’ prediction capability [7]. for loudness can be seenin Figure 4.
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Figure 2: The neural network estimate for pitch (upper pane) and the a@gguabntour (below). The estimates for each phone were
shifted according to the avera§e of each segment in the original pitch segment. Although the network was trained on vowel data
only, the estimates for other voiced phones are also shown.

| g i
LI I u
5:7 r r
8, T T
af i g -
T I r i
[ONE I I
N I I
© — —
EF g r
o; r r
SF [ladata] F [knal:i] F [tuuli]
E SRR R RN N B E 1
= § §
LI I I
J::i r r
8, T T
af i g
Or N r
Ok r r
NF r I
© I —
g: F N
st i g
i | | | | | | \[ta?e] | g [tam] i [galup]
L L1 | | | | | | | | L1 | | | | | | | |
relative time relative time relative time

Figure 3: Estimated pitch and actual values fat [n the wordsknalli andtase for [e] in taseand [I] in ladata gallup andtuuli. The

vowels are estimated with a network that was trained on all voiced phones; the I-estimates represent a specialized network trained only
on [l] phones. The triangles represent neural network estimates and the circles thé&actahles. The x-axis represents the nine
estimation frames for each phone.
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Figure 4: Estimated loudness and actual values frif the

words kahdeksarand arlanda  The triangles represent neural

5. CONCLUSION

We have presented some of our ongoing research of Finnish
prosody. Our results this far show that the neural network model
is applicable to both lexical and microscopic variations of the
prosodic parameters. The networks are capable of rule-like be-
havior and the next, obvious, step is to study the networks them-
selves to find out more about the factors that govern them and
thus the behavior of the parameters they model.
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