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ABSTRACT

An automated speech signal labeling tool, developed for the
QuickSig speech database environment, is described. It is based
primarily on the use of neural networks as diphone event detect-
ors. For robustness, only coarse categories of diphones, such as
stop–vowel and vowel–nasal, are used. 64 such detectors are
implemented to cover all of the Finnish diphones. The prepro-
cessing of speech signals is carried out using warped linear pre-
diction and the diphone events from neural network outputs are
matched to the given text transcription using a simple rule-based
parser. In the case of isolated word labeling of single speaker sig-
nals a well trained system makes about 1-2 % of coarse labeling
errors and the deviation of boundary positions, compared to care-
ful manual labeling, is on average about 10 ms. Generalization
ability to label other speakers shows promising.

1. INTRODUCTION

The labeling of speech signals is an important task in creating
speech databases which are to be of use for other applications.
E.g., phonetic analysis of a given language/ dialect / speaker or
the training of a speech recognizer normally presupposes the
availability of labeled (time-aligned transcription) speech data.

The labeling of some given speech signal data, assuming that
the orthographic or phonemic/phonetic transcription is given, can
be done manually, semiautomatically, or automatically. Manual
labeling is in principle the most precise and reliable method but
brings about several fundamental problems. Since such work is
extremely laborious and intensive, it cannot be applied to large
amounts of speech data. Also, it is prone to errors; both sys-
tematic labeling biases and lack of concentration introduce inac-
curacies for boundary locations. The latter problem is avoided
when using automatic labeling algorithms.

If careful labeling without errors and with precise boundary
locations is required, no existing automatic labeler is acceptable
in practice. Thus, semiautomatic labeling systems are needed
where the remaining inaccuracies from automatic labeling are
corrected manually.

A typical automatic or semiautomatic system for labeling
or transcription alignment is based on Hidden Markov Models
(HMM) [1]. Also, the development of such a system is usually a
bootstrap process where a small set of speech samples is manu-
ally labeled and an automatic labeler is trained based on this ini-
tial material. Later on the automated labeler is used to process
large sets of speech data.
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Figure 1: Block diagram of the automated labeling system.

In this paper we describe a new principle of automated labeling
that is under development for the QuickSig speech database sys-
tem [2, 3]. It is based primarily on the use of neural networks
as diphone event detectors, warped linear prediction (WLP) as a
preprocessing stage to compute the inputs of the networks, and a
rule-based parser for matching the given transcription and the di-
phone event sequence from diphone detectors. The labeler shows
very good time alignment precision and a low level of coarse la-
beling errors in a word labeling task where the system is boot-
strapped by a subset of a given speech data set and tested on the
remaining part of the data.

2. LABELING PRINCIPLE

Figure 1 shows the block diagram of the labeling system de-
veloped in this study. The preprocessing of speech signals could
be carried out using any method that is known to work, e.g., in
speech recognition. We have adopted warped linear prediction
due to the reasons explained below. The preprocessed represent-
ation is applied to a set of neural networks that perform diphone
event detection. Each individual net in the set is specialized to
detect a specific class of diphones. The network outputs yield
estimates of diphone class memberships as functions of time. Fi-
nally the diphone events, as maxima of the membership func-
tions, are collected together and a rule-based algorithm carries
out matching to the given orthographic transcription, thus yield-
ing the desired labeling.

The QuickSig platform supports also graphical displays and
interactive means for exploring and manipulating signals, tran-
scriptions, and labeling information [2, 3, 4].

3. WLP PREPROCESSING

We have selectedWarped Linear Prediction(WLP) [5, 6] as
a preprocessor to represent signals as sequences of feature vec-
tors. Warped linear prediction is a modification of the ordin-
ary LP in order to implement the warped frequency scale (Bark
scale) of human auditory perception. The basic idea is to replace
unit delays by first-order allpass filters, i.e., frequency-dependent
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Figure 2: LP and WLP spectra of vowel /a/ for different filter
orders.

delays, in any DSP structure, in order to obtain a warped ver-
sion of it. When in linear prediction analysis the autocorrelation
coefficients are computed using a warped delay line, this auto-
matically leads to warped linear prediction.

WLP has been compared to other preprocessing methods [6, 7]
and it is found to be as compact and powerful a representation as
mel-cepstral coefficients (MCC). A lattice formulation of WLP
with reflection coefficient parameters as outputs has a further ad-
vantage: the coefficients are normalized to lie in the range of [-1,
+1]. This normalization is advantageous in our case since these
parameters are used as inputs to neural networks.

Due to the Bark scale frequency warping the WLP method is a
compact representation also for wide-band speech. The sampling
frequency used in our speech database is 22.05 kHz. A WLP filter
size of 11 was found sufficient and one more element, the signal
level (loudness estimate), was added to compose a feature vector.

Figure 2 shows an example of ordinary vs. warped LP spectra
for vowel /a/ for different filter orders. From the point of view
of auditory resolution (Bark scale), much lower WLP orders can
be used than with ordinary LP, since auditory resolution does not
have to resolve spectral details at high frequencies.

4. NEURAL NET DIPHONE DETECTION

The most essential part of the labeler system is a set of diphone
event detectors composed of multilayer feedforward neural nets
(multilayer perceptrons). Several basic ideas are used here. First,
specializationis applied in the form of a parallel set of neural
nets, each one trained to detect a specific class of diphones. In
many contexts we have found that it is better to use several simple
nets, each net for a subtask, than one large network that has to
solve the entire problem.

Secondly, the detectors are designed to be not too categorical
so that they do not fully resolve the detailed diphone classes.
Instead,coarse categoriesare used for the Finnish language so
that all pair-wise combinations offvowel, stop, nasal, fricative,
semivowel, tremulant, liquid, pausegare provided with individual
neural nets for the corresponding diphone event detection; in total
64 networks are used. This coarse-categorical analysis results in

increased robustness and less sensitivity to speech and speaker
variation.

The inputs to the diphone detector networks are composed of
preprocessed feature vectors as shown in Fig. 3. A temporal win-
dow of�100 ms around the event detection point is utilized and
a hop size of 10 milliseconds specifies the temporal resolution.
The idea of using diphone detectors is the same as in our earlier
speech recognition experiments [8]. The dimensions ofeach net-
work are: 84 input nodes, 10 hidden nodes, and a single output
node. Although 64 such networks are run in parallel, the compu-
tation is faster than real-time on a fast Power Macintosh which is
the platform for the QuickSig system.

Figure 4 shows some examples of neural net diphone detector
outputs for the word /yyteri/. The outputs can be interpreted as
coarse diphone class membership estimates, 0.0 for no member-
ship and 1.0 for full membership. During the training phase the
networks learn a target membership curve that peaks around the
hand-labeled phoneme boundary, being a smooth ‘bump’ of 25
ms and zero elsewhere. During detection, a three-point median
filter is applied to smooth the network output waveforms.

Each network contributes its diphone detections that are de-
scribed as discrete events of the corresponding diphone category,
time position, and prominence value (peak level). A simple mask-
ing rule is used to reduce the number of low prominence events
by deleting them in the vicinity of high-prominence events. In a
majority of cases the correct type of event is found as the most
prominent one and almost always the correct event is among the
three top-prominence events.

5. TRANSCRIPTION MATCHING

The matching of a given orthographic transcription to a di-
phone event sequence is carried out using a relatively simple rule-
based algorithm. It is based on event processing with prominence
estimates and consists of three main phases:

1. First an event sequence is obtained using neural networks as
described above and the events are matched to diphones in
the given transcription. As a result each diphone contains
a list of all potential diphone events including a prominence
measure. No check of temporal positions of events is carried
out yet.

2. The second step is to find all possible diphone pairs (tri-
phones) for each phoneme generated from the orthographic
transcription. This means that the previous and next di-
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Figure 3: The configuration of a single diphone detector neural
net.



Figure 4: Examples of diphone detector network outputs for the
word /yyteri/.

phones of the phoneme are searched for to find diphone
events that properly enclose the phoneme. The combined
prominence of this diphone pair is computed from the prom-
inences of the events and their temporal distance compared
with the desired duration of the phoneme. Notice that
this can utilize explicit timing information. Simple aver-
ages of short and long phoneme durations are used in the
present version but more detailed rule-based or neural net-
work based duration generation could be used to improve
the performance.

3. The third phase of event parsing is to check the diphones
again in order to combine the triphones in such a way that
they compose a consistent sequence of diphones. A list
of such possible events is computed for each diphone with
a combined prominence measure. If no triphone match is
found, the diphone match information is used insted. This
may happen when no event for a neighbouring diphone ex-
ists. In such case, also the diphone with no proper events
is given a computed event that has the best rule-based ap-
proximation of temporal position between the neighbouring
diphones with proper events. As a further rule, if the po-
sition of a diphone, especially inside a diphthong, deviates
radically from a rule-based one a correction rule is applied
to balance the position. Since the estimation of non-existing
events may lead to less accurate positioning, this option is
not used in the experiments below which means that there
will be missing phoneme boundaries that we call coarse la-
beling errors. In the final phase of our algorithm the most
prominent event is selected to represent each diphone in the
utterance to be labeled.

6. EXPERIMENTS AND
PERFORMANCE

Manually labeled speech from the Finnbet speech database [3]
was used to train the neural networks and to evaluate the per-
formance of the labeler. The speech data was high-quality 16 bit
22 kHz sampling rate recordings made in an anechoic chamber.

The diphone nets were trained in all cases using standard back-
propagation algorithm except that selective training was applied
where the frequency of applying backpropagation was propor-
tional to the error magnitude. In the first experiment the auto-
mated labeling tool was trained for isolated word labeling using
700 words from a single male speaker and 188 words were left
for independent testing. The diphone nets were trained by ap-
plying the training material 200 times, i.e., each word and each
10 ms time position to all nets along with target data based on
hand-labeling. When the networks had been trained, a testing
phase followed. The 188 words were applied and the automatic
labelings were analyzed by comparing with manual ones. The
following table shows the percentage of coarse labeling errors
and deviation of phoneme boundaries. Coarse errors are cases
where the labeler did not find any diphone event to match or the
category was not correct. Alignment deviations are given as the
mean of absolute value of the difference in milliseconds.

Error type / data set Test set Train set
Coarse errors [%] 2.0 0.4

Mean align. dev. [ms] 8.7 6.2

The average deviation of the boundaries from manual segment-
ation was surprisingly low. Figure 5 shows the distribution of
boundary errors for the test set. The result shows two facts. First,
the manual segmentation has been systematic in order to allow
the networks to learn, and second, the networks learn accurately.
In fact, in some cases the deviation between automatic and hand-
labeling turned out after closer inspection to be due to inconsist-
ency of hand labeling.

In order to have a reference for the performance achieved, hid-
den Markov model (HMM) approach of simple alignment using
the HTK Toolkit [1] was applied to the same data as above. An
MFCC front-end with 25 ms frame and 10 ms hop size was used.
For short phonemes 3 state and for long phonemes 10 state 8 mix-
ture continuous density models were trained. The accuracy of
phoneme boundary alignment was tested in two cases: training
without (I) and with(II) manual segmentation information:

Train mode / data set Test set Train set
Mean dev. I [ms] 17.6 19.6
Mean dev. II [ms] 18.9 15.6

No coarse errors resulted since the HMMs always yield a phon-
eme boundary. The accuracy was not essentially different if
manual segmentation data was used or not. As a conclusion of
comparison, our new labeler shows an improvement in phoneme
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Figure 5: Histogram of phoneme boundary deviations between
automatic and hand labeling.



boundary alignment over simple HMM techniques. Although the
diphone event detectors are applied only every 10 ms the inter-
polation of event positions can yeld better resolution of phoneme
boundaries. (Notice that since this means a resolution better than
a typical pitch period, the hand-made labeling may not have such
accuracy even conceptually.)

The next experiment was related to the important question of
how the labeler can generalize to manage with speech data from
different speakers. An interesting case was to apply the labeler
trained above from speaker MK to words of another male speaker
MV that were not used for training (case 1). 700 words of both
speakers were used then for training in case 2 and tested with the
the rest for each speaker. The results are given in the following
table.

Error type / data set Case1 Case2 MK Case2 MV
Coarse errors [%] 12.6 7.6 9.0

Mean align. dev. [ms] 12.1 1.2 1.9

It can ce seen that when using only one speaker in training, the
rate of coarse errors increases relatively much for other speakers
but the alignment accuracy for the boundaries found is still good.
If two speakers are used in training, the system performs well for
both of them. We can conclude that the approach shows potential
for speaker generalization that is important when doing labeling
speaker independently.

Experiments with larger units than isolated words have to be
carried out yet because properly hand-labeled material was not
available. It can be expected that the performance of the labeler
may drop slightly from the level of isolated words since the vari-
ation of speech parameters is larger. Otherwise the principle used
should not be critically dependent on the length of the utterance
to be labeled.

7. DISCUSSION

Among problems that we found in the current system is the
detection of certain diphone events, such as slow transition di-
phones inside diphthongs. A neural net with wider temporal input
frame and focus to slow transitions could improve the perform-
ance. Also vowel-liquid (/l/) transitions are often found problem-
atic.

There is space for much improvement also in the rule-based
parsing of events to diphones of given transcription. The rules
desribed above are quite simple ad hoc rules and a more system-
atic matching algorithm could improve the accuracy. It might be
worth of considering the application of an HMM-like formalism
to the sequence of events found by neural nets.

The computational efficiency of the system is good. The data-
base system runs on Power Macintosh computers and the time
taken to obtain a labeling result on a 300 MHz machine is about
the same as the duration of the speech signal to be labeled.

8. SUMMARY AND FUTURE WORK

This paper describes an automated speech labeling tool that
is a part of the QuickSig speech database system. The labeler is
based on using neural networks for finding diphone events related
to coarse categories of Finnish speech and a rule-based parser to
match a given orthographic transcription to a given speech signal.

The system performs with a low error rate and precise phon-
eme boundary assignment when applied to speech samples of a
speaker that has been trained for the event detector neural nets.
Since the system is based on robust coarse category features, it
could be possible to extend it to labeling of speech also in a
speaker-independent manner. This and other improvements of
the labeler remain to be done as future work.
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