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ABSTRACT

Signal | Warped
An automated speech signal labeling tool, developed for the | e MIf net
QuickSig speech database environment, is described. It is based |_Pedicion gg’g&gf
primarily on the use of neural networks as diphone event detedtanscription
ors. For robustness, only coarse categories of diphones, such as
stop—vowel and vowel-nasal, are used. 64 such detectors ar
implemented to cover all of the Finnish diphones. The prepro-
cessing of speech signals is carried out using warped linear pre-
diction and the diphone events from neural network outputs ar
matched to the given text transcription using a simple rule-basd

parser. In the case of isolated word labeling of single speaker sifg™ [2: 3. It is based primarily on the use of neural networks
nals a well trained system makes about 1-2 % of coarse labelifig diPhone event detectors, warped linear prediction (WLP) as a

errors and the deviation of boundary jims, compared to care- Preprocessing stage to compute the inputs of the networks, and a

ful manual labeling, is on average about 10 ms. GeneralizatiJH'e'based parser for matching the given transcription and the di-
ability to label other speakers shows promising. phone event sequence from diphone detectors. The labeler shows

very good time alignment precision and a low level of coarse la-

beling errors in a word labeling task where the system is boot-
1. INTRODUCTION strapped by a subset of a given speech data set and tested on the
nrgmaining part of the data.

Diphone | Labeling
event  |—»
matcher

*

eFigure 1: Block diagram of the automated labeling system.

In this paper we describe a new principle of automated labeling
at is under development for the QuickSig speech database sys-

The labeling of speech signals is an important task in creati
speech databases which are to be of use for other applications.

E.g., phonetic analysis of a given language/ dialect/speaker or 2. LABELING PRINCIPLE
the training of a speech recognizer normally presupposes the ) )
availability of labeled (time-aligned transcription)esth data. Figure 1 shows the block diagram of the labeling system de-

veloped in this study. The preprocessing of speech signals could
The labeling of some given speech signal data, assuming thag carried out using any method that is known to work, e.g., in
the orthographic or phonemic/phonetic transcription is given, cagpeech recogdtion. We have adopted warped linear prediction
be done manually, semiautomatically, or automatically. Manualue to the reasons explained below. The preprocessed represent-
labeling is in principle the most precise and reliable method buttion is applied to a set of neural networks that perform diphone
brings about several fundamental problems. Since such workéyent detection. Each individual net in the set is specialized to
extremely laborious and intensive, it cannot be applied to largdetect a specific class of diphones. The network outputs yield
amounts of speech data. Also, it is prone to errors; both syestimates of diphone class memberships as functions of time. Fi-
tematic labeling biases and lack of concentration introduce inagally the diphone events, as maxima of the membership func-
curacies for boundary locations. The latter problem is avoidetions, are collected together and a rule-based algorithm carries
when using automatic labeling algorithms. out matching to the given orthographic transcription, thus yield-
ing the desired labeling.
If careful labeling without errors and with precise boundary
locations is required, no existing automatic labeler is acceptable The QuickSig platform supports also graphical displays and
in practice. Thus, semiautomatic labeling systems are needigdieractive means for exploring and manipulating signals, tran-
where the remaining inaccuracies from automatic labeling agcriptions, and labeling information [2, 3, 4].

corrected manually.
, , , 3. WLP PREPROCESSING
A typical automatic or semiautomatic system for labeling

or transcription alignment is based on Hidden Markov Models \ve have selectewarped Linear PredictiofWLP) [5, 6] as
(HMM) [1]. Also, the development of such a system is usually & preprocessor to represent signals as sequences of feature vec-
bootstrap process where a small set of speech samples is mag#s, Warped linear prediction is a modification of the ordin-
ally labeled and an automatic labeler is trained based on this ingry | in order to implement the warped frequency scale (Bark
tial material. Later on the automated labeler is used to proceggale) of human auditory perception. The basic idea s to replace
large sets of speech data. unit delays by first-order allpass filters, i.e., frequency-dependent



40 . increased robustness and less sensitivity to speech and speaker

Ordinary LP, synthetic vowel /a/ spectra variation.

20

The inputs to the diphone detector networks are composed of
preprocessed feature vectors as shown in Fig. 3. A temporal win-
dow of £100 ms around the event detection point tized and
‘ ‘ a hop size of 10 milliseands specifies the temporal resolution.
8000 9000 Hz The idea of using diphone detectors is the same as in our earlier
1 speech recogtion experiments [8]. The dimensionse#ch net-

WLP, synthetic vowel /a/ spectra work are: 84 input nodes, 10 hidden nodes, and a single output
7 node. Although 64 such networks are run in parallel, the compu-

tation is faster than real-time on a fast Power Macintosh which is

the platform for the QuickSig system.
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‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Figure 4 shows some examples of neural net diphone detector
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Hz outputs for the word /yyteri/. The outputs can be interpreted as
coarse diphone class membership estimates, 0.0 for no member-
Figure 2: LP and WLP spectra of vowel /a/ for different filter ship and 1.0 for full membership. During the training phase the
orders. networks learn a target membership curve that peaks around the
hand-labeled phoneme boundary, being a smooth ‘bump’ of 25
delays, in any DSP structure, in order to obtain a warped vems and zero elsewhere. During detection, a three-point median
sion of it. When in linear prediction analysis the autocorrelatioffilter is applied to smooth the network output waveforms.

coefficients are computed using a warped delay line, this auto- ] o ]
matically leads to warped linear prediction. Each network contributes its diphone detections that are de-

scribed as discrete events of the corresponding diphone category,
WLP has been compared to other preprocessing methods [6,tifie position, and prominence value (peak level). A simple mask-
and it is found to be as compact and powerful a representation g rule is used to reduce the number of low prominence events
mel-cepstral coefficients (MCC). A lattice formulation of WLP by deleting them in the vicinity of high-prominence events. In a
with reflection coefficient parameters as outputs has a further aahajority of cases the correct type of event is found as the most
vantage: the coefficients are normalized to lie in the range of [-prominent one and almost always the correct eventis among the
+1]. This normalization is advantageous in our case since theti&ree top-prominence events.

parameters are used as inputs to neural networks.
, _ 5. TRANSCRIPTION MATCHING
Due to the Bark scale frequency warping the WLP method is a
compact representation also for wide-band speech. The samplingrhe matching of a given orthographic transcription to a di-

frequency used in our speech databaseis 22.05 kHz. A WLP filtghone event sequence is carried out using a relatively simple rule-

size of 11 was found sufficient and one more element, the signghsed algorithm. It is based on event processing with prominence
level (loudness estimate), was added to compose a feature vecfafiimates and consists of three main phases:

Figure 2 shows an example of ordinary vs. warped LP spectral- Firstan eventsequenceis obtained using neural networks as
for vowel /a/ for different filter orders. From the point of view  described above and the events are matched to diphones in
of auditory resolution (Bark scale), much lower WLP orders can  the given transcription. As a result each diphone contains

be used than with ordinary LP, since auditory resolution does not 2 list of all potential diphone events including a prominence
have to resolve spectral details at high frequencies. measure. No check of temporal positions of events is carried
out yet.

4. NEURAL NET DIPHONE DETECTION 2. The second step is to find all possible diphone pairs (tri-
phones) for each phoneme generated from the orthographic
The most essential part of the labeler systemis a set of diphone transcription. This means that the previous and next di-
event detectors composed of multilayer feedforward neural nets A o
(multilayer perceptrons). Several basic ideas are used here. First, §_Membership Estimate

specializationis applied in the form of a parallel set of neural / |:| \ Output: 1
Fully Connected

nets, each one trained to detect a specific class of diphones. In

many contexts we have found that it is better to use several simple LI I I I I Jwidden: 10
nets, each net for a subtask, than one large network that has to / Fully Connected \

solve the entire problem. | | | | | | | | | | | | | | 1nput:

Averaged 7x12=84
Secondly, the detectors are designed to be not too categori@@“re A A A A A A

- - os W2 B2 B BBz B2 Bo
so that they do not fully resolve the detailed diphone classes. e

Instead,coarse categorieare used for the Finnish language so4————+—++++ 1+ 1+ 1+ + + + | ( |

that all pair-wise combinations dfvowel, stop, nasal, fricative, -100 -80 -60 -40 -20 0 +20 +40 +60 +80 +100ms
semivowel, tremulant, liquid, pausare provided with individual

neural nets for the corresponding diphone event detection; in totaigure 3: The configuration of a single diphone detector neural

64 networks are used. This coarse-categorical analysis resultsnet.




! PAUSE— VOWEL The diphone nets were trained in all cases using standard back-
propagation algorithm except that selective training was applied
where the frequency of applying backpropagation was propor-

!l vowEL —paUSE tional to the error magnitude. In the first experiment the auto-
. mated labeling tool was trained for isolated word labeling using
L — 700 words from a single male speaker and 188 words were left
/oA for independent testing. The diphone nets were trained by ap-
0 plying the training material 200 times, i.e., each word and each
' VOWEL — TREMULANT 10 ms time position to all nets along with target data based on
W—JLwﬁ hand-labeling. When the networks had been trained, a testing
? phase followed. The 188 words were applied and the automatic
STOP — VOWEL labelings were analyzed by comparing with manual ones. The
o b following table shows the percentage of coarse labeling errors
1 REMULANT — VOWEL and deviation of phoneme boundaries. Coarse errors are cases
fJ\—A where the labeler did not find any diphone event to match or the
category was not correct. Alignment deviations are given as the

word: /yyteri/ mean of absolute value of the difference in millisads.

Error type / data set| Testset| Train set
Coarse errors [%] 2.0 0.4
Mean align. dev. [ms]| 8.7 6.2

Figure 4: Examples of diphone detector network outputs for the

word lyyteri/. The average deviation of the boundaries from manual segment-
) . ation was surprisingly low. Figure 5 shows the distribution of
23::; Str?;ttglraogz:l);eenr:celoasrg tiiagizii:r?é tczr:]lgdcgggitr)]rbe undary errors for the_test set. The result shoyv; two facts. First,
prominence of this diphone pair is computed.from the prom? e manual segmentation has been systematic in order to allow
inences of the events and their temporal distance comparthae networks to learn, and second, the networks learn accurately.

. . . : n fact, in some cases the deviation between automatic and hand-
with the desired duration of the phoneme. Notice thar

this can utilize explicit timing information. Simole aver- abeling turned out after closer inspection to be due to inconsist-
P 9 . P ency of hand labeling.

ages of short and long phoneme durations are used in the

present version but more detailed rule-based or neural net-, grger to have a reference for the performance achieved, hid-
work based duration generation could be used to improvgen, Markov model (HMM) approach of simple alignment using
the performance. the HTK Toolkit [1] was applied to the same data as above. An
3. The third phase of event parsing is to check the diphond4FCC front-end with 25 ms frame and 10 ms hop size was used.
again in order to combine the triphones in such a way thdtor short phonemes 3 state and for long phonemes 10 state 8 mix-
they compose a consistent sequence of diphones. A liitre continuous density models were trained. The accuracy of
of such possible events is computed for each diphone withhoneme boundary alignment was tested in two cases: training
a combined prominence measure. If no triphone match Without (1) and with(ll) manual segmentation information:
found, the diphone match information is used insted. This
may happen when no event for a neighbouring diphone ex-
ists. In such case, also the diphone with no proper events
is given a computed event that has the best rule-based ap-
proximation of temporal position between thegtdiouring No coarse errors resulted since the HMMs always yield a phon-
diphones with proper events. As a further rule, if the poeme boundary. The accuracy was not essentially different if
sition of a dphone, especially inside a diphthong, deviatesnanual segmentation data was used or not. As a conclusion of
radically from a rule-based one a correction rule is appliedomparison, our new labeler shows an improvement in phoneme
to balance the position. Since the estimation of non-existin
events may lead to less accurateiposing, this option is
not used in the experiments below which means that there
will be missing phoneme boundaries that we call coarse lag
beling errors. In the final phase of our algorithm the most
prominent event is selected to represent each diphone in the

Train mode / data set Test set| Train set
Mean dev. | [ms] 17.6 19.6
Mean dev. Il [ms] 18.9 15.6

utterance to be labeled. 20
6. EXPERIMENTS AND 1o
PERFORMANCE
0
Manually labeled speech from the Finnbet speech database [3] -0.05 0 0.05 sec

was used to train the neural networks and to evaluate the per- ) o
formance of the labeler. The speech data was higllitguz bit ~ Figure 5: Histogram of phoneme boundary deviations between
22 kHz sampling rate recordings made in an anechoic chamb@ttomatic and hand labeling.



boundary alignment over simple HMM techniques. Althoughthe 8. SUMMARY AND FUTURE WORK

diphone event detectors are applied only every 10 ms the inter-

polation of event positions can yeld better resolution of phoneme This paper describes an automated speech labeling tool that

boundaries. (Notice that since this means a resolution better thisna part of the QuickSig speech database system. The labeler is

a typical pitch period, the hand-made labeling may not have sudtfased on using neural networks for finding diphone events related

accuracy even conceptually.) to coarse categories of Finnish speech and a rule-based parser to

match a given orthographic transcription to a given speech signal.

The next experiment was related to the important question of

how the labeler can generalize to manage with speech data fromThe system performs with a low error rate and precise phon-

different speakers. An interesting case was to apply the labeleme boundary assignment when applied to speech samples of a

trained above from speaker MK to words of another male speakepeaker that has been trained for the event detector neural nets.

MV that were not used for training (case 1). 700 words of botiBince the system is based on robust coarse category features, it

speakers were used then for training in case 2 and tested with tbeuld be possible to extend it to labeling of speech also in a

the rest for each speaker. The results are given in the followingpeaker-independent manner. This and other improvements of

table. the labeler remain to be done as future work.
Error type / data set| Casel| Case2 MK | Case2 MV
Coarse errors [%] 12.6 7.6 9.0 9. ACKNOWLEDGEMENT
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This project has been supported by the Academy of Finland.
It can ce seen that when using only one speaker in training, the

rate of coarse errors increases relatively much for other speakers 10. REFERENCES

but the alignment accuracy for the boundaries foundillsgood.

If two speakers are used in training, the system performs well fgn] HTK Toolkit, Entropic Research Laboratory, Inc.,

both of them. We can conclude that the approach shows potential  http://www.entropic.com/

for speaker generalization that is important when doing IabelinPZ]

speaker independently. Karjalainen M., and Altosaar T., “An Object-Oriented Data-

base for Speech ProcessinBrbc. of Eurospeech’93Ber-

Experiments with larger units than isolated words have to be N, 1993
carried out yet because properly hand-labeled material was N8 Altosaar T., Karjalainen M., and Vainio M., “A Multi-
available. It can be expected that the performance of the labeler Lingual Phonetic Representation and Analysis System
may drop slightly from the level of isolated words since the vari- for Different Speech Database$CSLP’96 Philadelphia,
ation of speech parameters is larger. Otherwise the principle used 1996.
should not be dtically dependent on the length of the utterance[4] Karjalainen M., “DSP Software Integration by Object-
to be labeled. Oriented Programming, A Case Study of QuickSIEEE

ASSP Magaziné\pril 1990.
7. DISCUSSION . L
[5] Strube H. W., “Linear Prediction on a Warped Frequency

Among problems that we found in the current system is the fg%e' J. Acoust. Soc. Agwol. 68, no. 4 (1980), pp. 1071-
detection of certain diphone events, such as slow itiansdi- :
phones inside diphthongs. A neural netwith wider temporal inpdf] Laine U. K., Karjalainen M., Altosaar T., “Warped Linear
frame and focus to slow transitions could improve the perform-  Prediction (WLP) in Speech and Audio Processiiyfc.
ance. Also vowel-liquid (/I/) transitions are ofteouind problem- IEEE ICASSP -94Adelaide, 1994.

atic. [7]1 Boda P.,Psychoacoustical Considerations in Speech Ana-
lysis and Recognitiariicentiate thesis, Helsinki University

There is space for much improvement also in the rule-based of Technology, Espoo, Finland, 1995.

parsing of events to diphones of given transcription. The rules
desribed above are quite simple ad hoc rules and a more systd}- Altosaar T., and Karjalainen M., “Diphone-Based Speech
atic matching algorithm could improve the accuracy. It might be ~ Recognition Using Time-Event Neural Networks?foc.
worth of considering the application of an HMM-like formalism ICSLP'92 Banff, 1992.

to the sequence of events found by neural nets.

The computational efficiency of the systemis good. The data-
base system runs on Power Macintosh computers and the time
taken to obtain a labeling result on a 300 MHz machine is about
the same as the duration of the speech signal to be labeled.



